

Precision Medicine: Oncologist perspective on the impact of the molecular evaluation of solid tumor

Mariano Provencio

Servicio de Oncología Médica

Hospital Universitario Puerta de Hierro

DISCLOSURES

Employment:

- •Universidad Autónoma de Madrid.
- Chair of Medical Oncology Department at Puerta de Hierro Hospital

Research Grants:

AstraZeneca, Roche, BMS, Boerhringer-Ingelheim

Stock holder:

none

Consultant:

AstraZeneca, BMS, Boerhringer-Ingelheim, Celgene, MSD, Roche, Takeda, Thermo Fisher Scientific

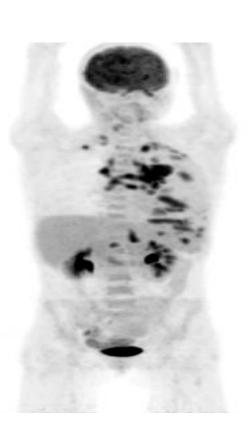
Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar. Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text and material represent they have the rights to do so.

Speaker was provided an honorarium by Thermo Fisher Scientific for this presentation.

Precision Medicine

Background & Current Situation

SPAIN ≈ 250.000 Cancer New Cases



REDECAN. Cancer Incidence in Spain 2015. Clin Transl Oncol. DOI 10.1007/s12094-016-1607-

- Lung Cancer ≈28.000 new cases/year
- 1st Cause of cancer-related death

Clinical Case

Woman: 56 years, no smoker

Diagnosis: lung cancer IV stage- July 2014

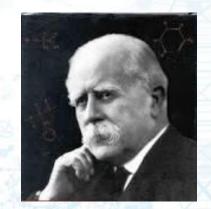
Metastasis: bones, ganglions and lung

THE PRECISION MEDICINE INITIATIVE

PRECISION MEDICINE

INITIATIVE

So what is Precision Medicine?


It's health care tailored to you.

In his 2015 State of the Union address,
President Obama announced that he's
launching the Precision Medicine Initiative —
a bold new research effort to revolutionize
how we improve health and treat disease.

Until now, most medical treatments have been designed for the "average patient." As a result of this "one-size-fits-all" approach, treatments can be very successful for some patients but not for others. Precision Medicine, on the other hand, is an innovative approach that takes into account individual differences in people's genes, environments, and lifestyles.

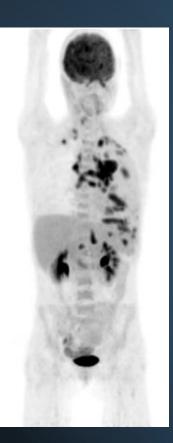
President Obama participates in a panel discussion moderated by Dr. James Hamblin of The Atlantic on the importance of PMI at the White House, February 25, 2016.

Genetics in Medicine COMMENTARY

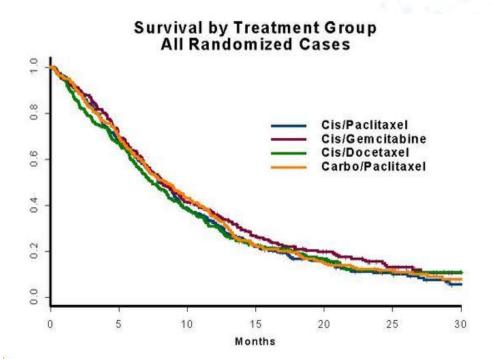
© American College of Medical Genetics and Genomics

Archibald E. Garrod: the father of precision medicine

Robert L. Perlman, MD, PhD^1 and Diddahally R. Govindaraju, PhD^2


Archibald Garrod is best known for his book *Inborn Errors* of *Metabolism* (1909), in which he argued that four diseases—alkaptonuria, albinism, cystinuria, and pentosuria—were inherited as Mendelian autosomal recessive traits.² This pre-

was a commonly used term for gene.) He discussed chemical individuality in the context of Darwin's theory of evolution by natural selection and by considering disease as an "agent of evolution" (p. 53). After calling attention to some of the chemical


prehensive understanding of individual patients, because "The constitution of a man is the sum of *all* his qualities, his bodily form, the structure of his tissues, his coloration, height, weight, blood pressure, and body temperature; ... and tricks of gesture and action. In all or some of these respects, each man differs from all his fellows, for even uniovular twins are not exactly

- Clinical case
- Woman: 56 years, no smoker
- **Diagnosis**: lung cancer IV stage- July 2014
- Metastasis: bones, ganglions and lung

5 Years Survival rate with chemotherapy: **0**%

UNSELECTED POPULATION

ORR: 20-30%

mPFS: 5-6 months

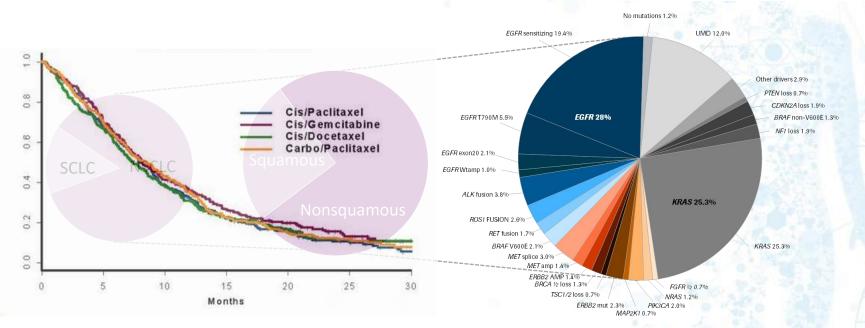
mOS: 8-10 months

2 year survival rate: 11%

5 year survival rate: 0%

Schiller J, et al. N Enl J Med 2012

So what is Precision Medicine?

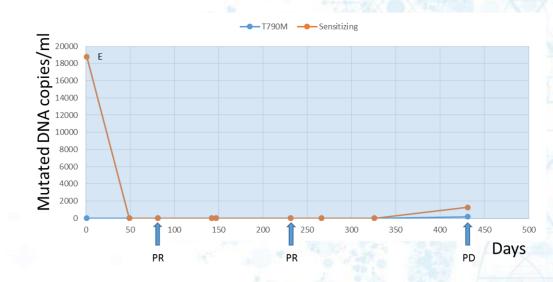

It's health care tailored to you.

In his 2015 State of the Union address, President Obama announced that he's launching the Precision Medicine Initiative a bold new research effort to revolutionize how we improve health and treat disease.

Until now, most medical treatments have been designed for the "average patient." As a result of this "one-size-fits-fil" approach, treatments can be very successful for some patients but not for others. Precision Medicine, on the other hand, is an innovative approach that takes into account individual differences in people's genes, environments, and filestyles.

President Obama participates in a panel discussion moderated by Dr. James Hamblin of The Atlantic on the importance of PMI at the White House, February 25, 2016.

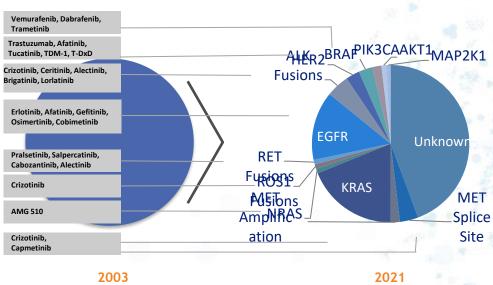
Spectrum of oncogenic drivers associated to 860 patients with lung adenocarcinoma identified by MSK-Impact.


SCLC: small cell lung cancer, NSCLC: non-small cell lung cancer; UMD: no actionable mutation.

1. Bode, A. M., and Dong, Z., (2018) npj Precision Onc 2:1; 2. Jordan EJ et al. (2017) Cancer Discov. 2017; 7: 596-609.

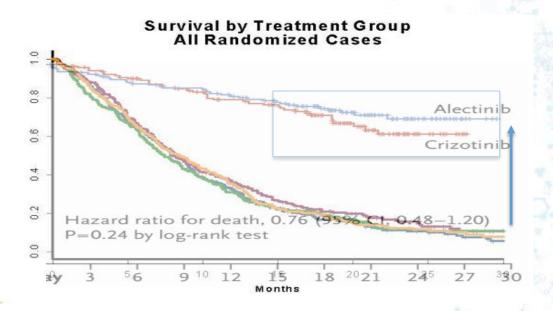
Positive for EGFR del. exon 19 mutation

Complete remission after treatment with first generation TKI



Disease progression after 15 months

Lung Cancer: poster child for precision medicine


Why is it important to identify molecular biomarkers for every patient?

Lung Adenocarcinoma

2003

Why is it important to identify molecular biomarkers for every patient?

Targeted therapy: 10 years of progress

2004

The NEW ENGLAND JOURNAL of MEDICINE

STABLESHED IN 181

MAY 20, 200

VOL. 350 NO. 21

Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib

Thomas J, Lynch, M.D., Daphne W. Bed, Ph.D., Raffaellis Gordella, Ph.D., Sarada Garuthhagavathla, M.D., Ross, A., Olemoto, R.S., Fleins W. Brannigne, R.A., Patricia L. Harris, M.S., Sarad, Jeffrey G. Supko, Ph.D., Frank, G., Halvaka, M.D., Ph.D., David N. Louis, M.D., David C. Christiani, M.D., Jeff Serfferman, Ph.D., and Obasiel A. Haber, M.D., Ph.D., David N. Louis, M.D., Jeff Serfferman, Ph.D., and Obasiel A. Haber, M.D., Ph.D.

EGFR Mutations in Lung Cancer: Correlation with Clinical

Response to Gefitinib Therapy
J. Gulllarmo Paez, 1.30 Pael A. Jänne, 1.30 Jaffray C. Lee, 1.30

J. Guillarmo Paux, "An Pasi A. Jänne, "An Juffray C. Lee, "3" assem Tracy," Heldi Greditich, "2 Staccy Gohrist, "Pasia Harman, Frederic J. Knya," Neel Lindsman, "Titus J. Buggon, "3 Katuchika Neelski, "Hiddhorni Sanski, "Yoshitaka Figit," Michael J. Eds., "2 Williams R. Sellars, "A-4", Bruce E. Johnson, "A" Hatthew Hagyarmon, "A-4", Bruce E. Johnson, "A" Hatthew Hagyarmon, "A-4"

facultin fristins being select were seen segment of non-time failt free (since) (PSLC) and matched remaind from Service matched from Service matched from Service matched from Service matched from Service from Service matched from Service f

Protein kituse activation by somatic metation or chromosomal atteration is a comsion mechanism of immedgenesis (i), inhisuilbody-based strategies has energed as

dimornagong SOBHOZ VOL 304 4 JUNE 2004

EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib

William Pao*", Vincent Miller¹; Maureen Zakovskii¹, Jennifer Doherty*, Katerina Politi*, Inderpal Sarkariai¹, Bhuvanesh Singhl, Robert Heelan**, Valerie Rusch¹, Lucinda Fulto n¹¹, Elaine Mardis¹¹, Doris Kupfer¹¹, Richard Wilsor Mark Kris¹; and Harold Varmus*

*Program in Cancer Biology and Genetics and Departments of "Medicine, Surgery, "Pathology, and "*Radiology, Memorial Sigan-Rettering Cancer Center, 1275 York Awarus, New York, NY 18021; and 11 Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park Boulevard, to Long SEP 2018.

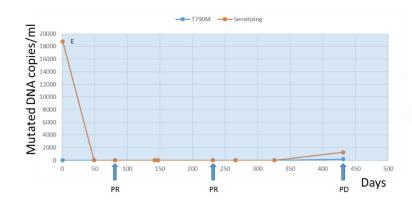
Complete the second bloom at the second

Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

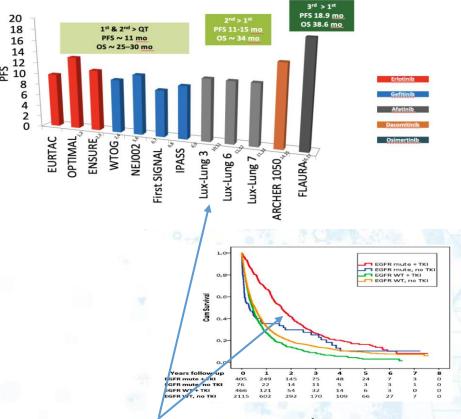
Originally published in 2018 – Ann Oncol (2018) 29 (suppl 4): iv192–iv237 D. Planchard¹, S. Popat², K. Kerr³, S. Novello⁴, E. F. Smit⁵, C. Faivre-Finn⁶, T. S. Mok⁷, M. Reck⁸, P. E. Van Schil⁹, M. D. Hellmann¹⁰ & S. Peters¹¹, on behalf of the ESMO Guidelines Committee*

- 1. Patients with a tumour with a sensitising EGFR mutation should receive first-line EGFR TKIs including erlotinib, gefitinib or afatinib, or dacomitinib. None of the four EGFR TKIs is consensually considered as a preferred option
- 2. First-line osimertinib is now considered one of the options for patients with a tumour with sensitising EGFR mutations

Translational Oncology 14 (2021) 100934


Contents lists available at ScienceDirect

Translational Oncology


journal homepage: www.elsevier.com/locate/tranon

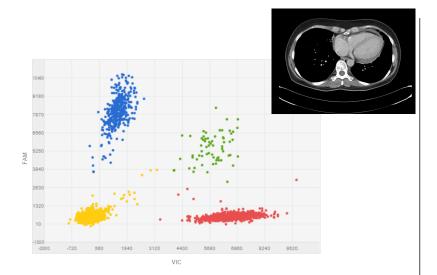
Long term follow-up of EGFR mutated NSCLC cases

Gad Rennert^{a,b,c,*}, Maya Gottfried^d, Hedy S Rennert^{a,b}, Flavio Lejbkowicz^{a,b}, Meira Frank Ilana Cohen^{a,b}, Shiri Kelt^{a,b}, Abed Agbarya^e, Elizabeta Dudnik^e, Julia Dudnik^e, Rivka Katznelson^h, Moshe Mishali^d, Natalie Maimon Rabinovich^d, Hovav Nechushtanⁱ, Amir Onn^j, Shoshana Keren Rosenberg^k, Mariana Wollner^l, Alona Zer^f, Jair Bar^{m,1}, Naomi Gronich^{a,b,1}

PFS comparison of first- and second-generation TKIS vs third-generation TKIS

Our patient PFS: 15 months

a Clalit Health Services National Cancer Control Center and Personalized Medicine Program, Israel

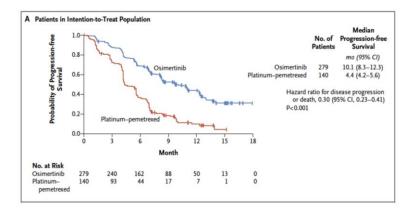

Erlotinib or gefitinib or afatinib MET Amplification 3% Small cell+MET 18% Small cell 19% Small cell

Back to hospital for Cardiac tamponade
Poor general condition
Requires surgical evacuation

PFS: 15 months

Plasma negative at T790M

0% live at 5 years PFS: 4 months

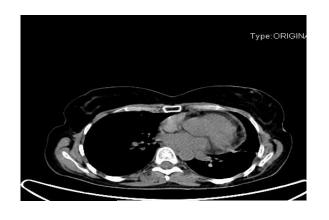


T790M mutation identified in pericardial liquid

Osimertinib treatment started

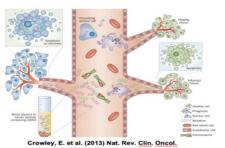
What to expect from Chemotherapy?

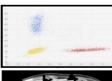
Osimertinib in T790M+ acquired resistance to EGFR TKIs


DE GRUYTER

Clin Chem Lab Med 2021; aop

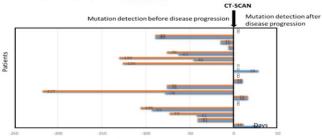
Clara Pérez-Barrios*, Estela Sánchez-Herrero, Natalia Garcia-Simón, Miguel Barquín, Mariola Blanco Clemente. Mariano Provencio and Atocha Romero

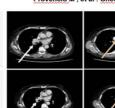

ctDNA from body fluids is an adequate source for EGFR biomarker testing in advanced lung adenocarcinoma

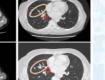



Complete Response

ctDNA

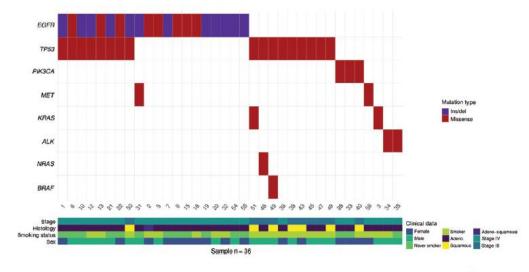





Provencio M , et al . Oncotarget. 2017 Aug 7;8(36):60291-60291

Romero A, et al . Translational Research 2015; 166(6):783-7

García-Sáenz JA et al. BMC Cancer 2017;17(1):210


Provencio M , et al . Oncotarget. 2017 Nov 16;9(1):488-494

ctDNA NGS profiling is feasible. HPH experience.

DE GRUYTER Clin Chem Lab Med 2019; aop

Mariano Provencio^a, Clara Pérez-Barrios^a, Miguel Barquin^a, Virginia Calvo, Fabio Franco, Estela Sánchez, Ricardo Sánchez, Daniel Marsden, Juan Cristóbal Sánchez, Paloma Martin Acosta, Raquel Laza-Briviesca, Alberto Cruz-Bermúdez and Atocha Romero*

Next-generation sequencing for tumor mutation quantification using liquid biopsies

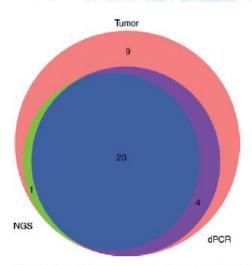


Figure 3: Venn diagram summarizing the number of mutations identified by NGS (green), dPCR (purple) and reported according to pathologist report (pink) and overlapping results (blue).

Clinical Utility of Comprehensive Cell-free DNA Analysis to Identify Genomic Biomarkers in **Patients with Newly Diagnosed Metastatic** Non-small Cell Lung Cancer &

ria M. Raymond³, Davey B. Daniel⁴, ⁶, Miguel A. Villalona-Calero⁷, Daniel Dix³, n³, and Vassiliki A. Papadimitrakopoulou⁸

						c c c c c c c c c c c c c c c c c c c				
Patient	Highest-level actionable alteration	VAF (%)	Co- mutations	Line of therapy	Treatment	Treatment context	Best response	mPFS (months)	mOS (months)	⁶ , Miguel A n ³ , and Vas
1	EGFR (exon 19 del)	5.5	Yes	First line	Erlotinib ± Ramucirumab	Clinical trial (NCT02411448)	Partial response	11.8	14.1	
2	EGFR (exon 19 del)	6.4	Yes	Second line	Afatinib	Standard care	Stable disease	10.8	11.9	
3	EGFR (exon 19 del)	11.6	Yes	First line	Afatinib	Standard care	Partial response	5	6.1	
4	EGFR (exon 19 del)	0.08	No	First line	Erlotinib	Standard care	Partial response	7.7	11	
5	EGFR (L858R)	35.2	Yes	First line	Gefitinib	Standard care	Partial response	7.2	10	
6	EGFR (L858R)	0.3	Yes	First line	Gefitinib	Standard care	Not evaluable ^a	0.7	1.1	ping is chal-
7	EGFR (L858R)	10.3	Yes	First line	Afatinib	Standard care	Partial response	8.1	8.2	ts with newly
8	ROS1 (SDC4-ROS1)	1.3	Yes	Second line	Crizotinib	Standard care	Partial response	3.6	5.2	r (mNSCLC)
9	BRAF (V600E)	0.3	No	Forth line	Dabrafenib + trametinib	Compassionate use	Partial response	3.7	13.4	: biomarkers med to dem-
10	MET (exon 14 skip)	8	Yes	Second line	Crizotinib	Compassionate use	Progressive disease	0.5	1.9	ell-free DNA
11	HER2 (S310F)	2.2	Yes	Third line	Paclitaxel + trastuzumab	Compassionate use	Stable disease	2.9	10.4	ndard-of-care
12	FGFR1 (AMP)		Yes	Second line	Docetaxel + nintedanib	Standard care	Partial response	2.8	13.8	commended

Italicized numbers correspond to censored events.

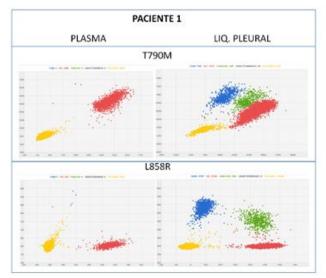
VAF, variant allele frequency; AMP, amplification; mPFS, median progression-free survival; mOS, median overall survival.

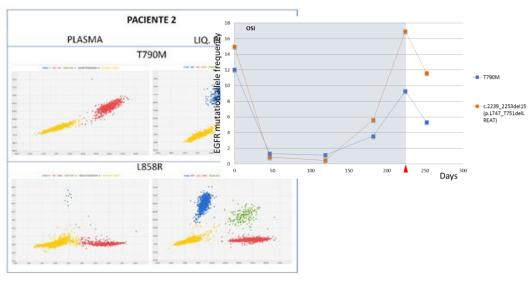
Results: Among 282 patients, physician discretion SOC tissue genotyping identified a guideline-recommended biomarker in 60 patients versus 77 cfDNA identified patients (21.3% vs. 27.3%; $P \le 0.0001$ for noninferiority). In tissue-positive patients, the biomarker was identified

patients with sician discretment blood irdant360).

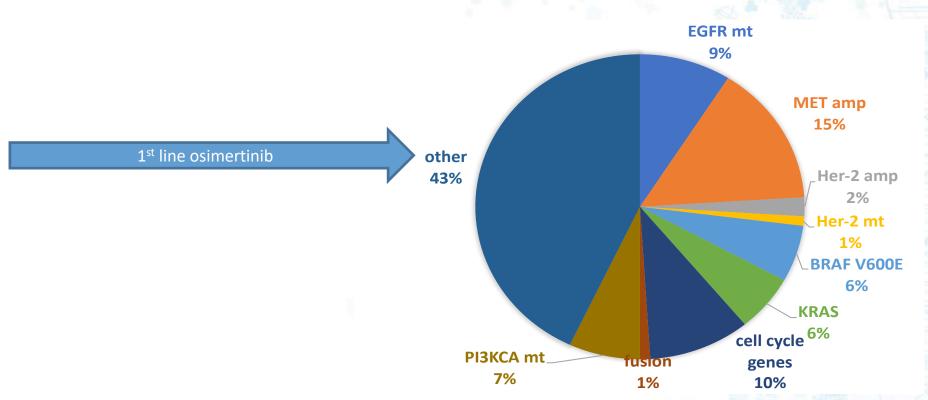
alone (12/60) or concordant with cfDNA (48/60), an 80% cfDNA clinical sensitivity for any guidelinerecommended biomarker. For FDA-approved targets (EGFR, ALK, ROS1, BRAF) concordance was >98.2% with 100% positive predictive value for cfDNA versus tissue (34/34 EGFR-, ALK-, or BRAF-positive patients). Utilizing cfDNA, in addition to tissue, increased detection by 48%, from 60 to 89 patients, including those with negative, not assessed, or insufficient tissue results, cfDNA median turnaround time was significantly faster than tissue (9 vs. 15 days; P < 0.0001). Guideline-complete genotyping was significantly more likely (268 vs. 51; P < 0.0001).

Conclusions: In the largest cfDNA study in previously untreated mNSCLC, a validated comprehensive cfDNA test identifies guideline-recommended biomarkers at a rate at least as high as SOC tissue genotyping, with high tissue concordance, more rapidly and completely than tissue-based genotyping.


See related commentary by Meador and Oxnard, p. 4583

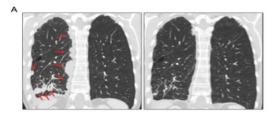

Zugazagoitia J et al. Clinical utility of plasma-based digital next-generation sequencing in patients with advance-stage lung adenocarcinomas with insufficient tumor samples for tissue genotyping. Ann Oncol. 2019 Feb 1;30(2):290-296

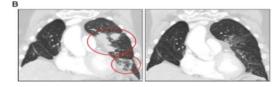
^aThis patient died of septicemia and the disease could not be evaluated for response.


Testing. EXPERIENCE FROM HPH

- Malignant effusions are very informative
- AF increases over time. T790M detection rate increases when more than one sample is tested. Changes can be seen within days.

Profile of acquired resistance to osimertinib in 1st



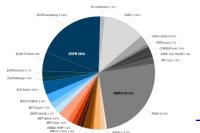

Cancer Discov, 2018 Sep 26. doi: 10.1158/2159-8290.CD-18-1022. [Epub ahead of print]

Landscape of Acquired Resistance to Osimertinib in *EGFR*-Mutant NSCLC and Clinical Validation of Combined EGFR and RET Inhibition with Osimertinib and BLU-667 for Acquired *RET* Fusion.

Piotrowska Z^{#1}, Isozaki H^{#1}, Lennerz JK², Gainor JF¹, Lennes IT¹, Zhu VW³, Marcoux N¹, Banwait MK¹,

Responses observed in the two patients treated with osimertinib and BLU-667

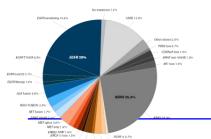
EGFR sensitizing 19.4%


No mutations 1 20s.

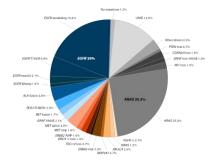
CORNOA loss 1 90s

	Pralsetinib (BLU-667) Prior Platinum Tx Naive		Selpercatinib Prior Platinum		
n (ITT response)	92	29	105	39	
ORR (%)	61% (55%)	73% (66%)	64%	85%	
CNS Evaluable Response (n)	9		22		
CNS ORR (%)	56	%	82%		
DOR	NR (11.3	NR (11.3 - NR)		NR (12-NR)	
Median follow-up (mo)	7.5	3.7	14	9	
PFS (mo)		-	17	NE	
Dosing	400 mg daily		160 mg BID		

PRESENTED AT: 2020ASCO ANNUAL MEETING ANNUAL MEETIN


Gainor J, et al. ASCO 2020 Subbiah et al. ASCO 2020

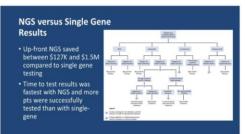
MET TKI in METex¹⁴ NSCLC


MET splice a.0% MET amp 1.4%					
MET any Live FIRST 0.5 Pt FI	Dose	Line	N	RR (%)	PFS (mo.)
CRIZOTINIB (PROFILE 1001)	250 mg BID	Naïve	24	25	7.3
CAPMATINIB (GEOMETRY)	400 mg BID	Naïve (cohort 5B)	28	68	12.4
TEPOTINIB (VISION)	500 mg QD FDA priority review	Naïve	43	44	8.5
SAVOLITINIB	600 mg QD (≥ 50 Kg) 400 mg QD (< 50 Kg)	Naïve	28	46	5.6

Capmatinib: icRR 54% (7/13)

MET TKI in MET amp NSCLC

19					
MAAS 26.3%. ADANS 26.3%	Ampl	N	RR(%)	PFS (mo.)	OS (mo.)
MC (vice a tree MC vice a tree MC vice at tree MC (vice at 37°) FSC(vice a	GCN≥4	20	40	6.7	
CRIZOTINIB (PROFILE 1001)	GCN >2.2 - <4	14	14	1.9	NR
	GCN <2.2	3	33	1.8	
CRIZTONIB (AcSé)	GCN ≥ 6	25	16	3.2	5.7
CRIZOTINIB (METROS)	GCN ≥ 2	16	31	5.0	NR
Howe	her efficacy as higher is ver, even in high MET (≥ are MET TKI the best ap	10) EFFI	CACY is MOD	EST	
CAPMATINIB (GEOMETRY)	MET/CEP7 ≥10 Naïve	14	40	4.2	9.6
	MET/CEP7 ≥ 10 Pre	55	29	4.1	10.6
SYM105	MET/CEP7 ≥2 Naïve	7	29	5.5	NR
	MET/CEP7 ≥ 2 Pre	1	NR	5.4	

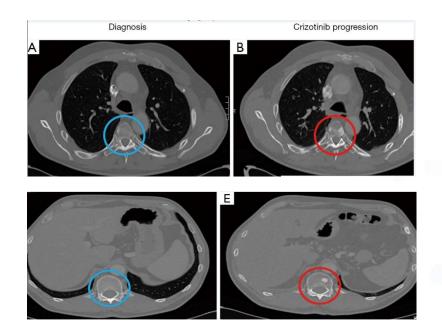

- Clinical Case
- Woman: 56 years, no smoker
- Diagnosis: lung cancer IV stage- July 2014
- Metastasis: bones, ganglions and lung

ORIGINAL REPORT

Economic Impact of Next-Generation Sequencing Versus Single-Gene Testing to Detect Genomic Alterations in Metastatic Non–Small-Cell Lung Cancer Using a Decision Analytic Model

Nathan A. Pennell, MD, PhD¹; Alex Mutebi, PhD²; Zheng-Yi Zhou, PhD³; Marie Louise Ricculli, MSc³; Wenxi Tang, MS³; Helen Wang³; ...

- Compared sequential or simultaneous testing of single gene tests for EGFR-ALK-ROS1-BRAF to up-front NGS.
- Used CMS and commercial payer reimbursement rates for testing in a hypothetical cohort of NSCLC patients.

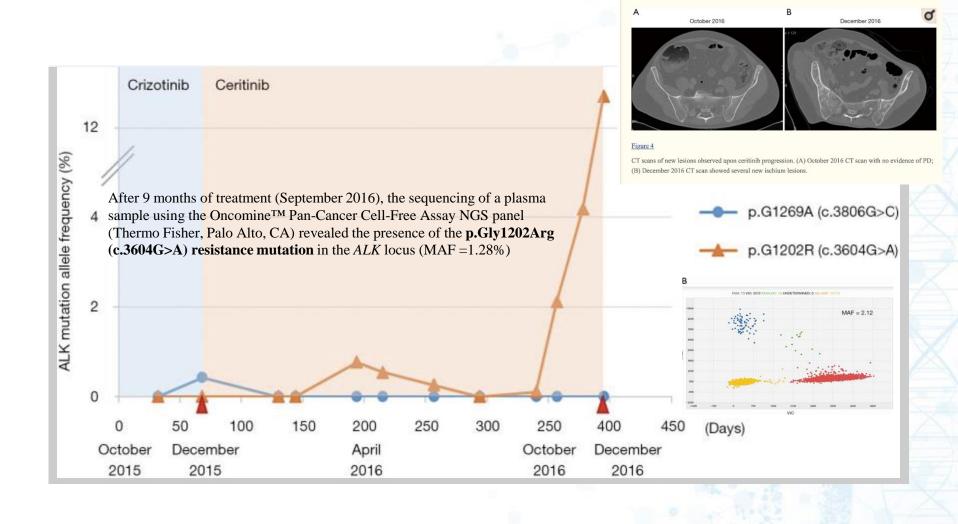

Pennell N et al. JCO Prec Oncol 2019

5 Years Survival rate with chemotherapy: **0**%

The need to determine precisely what happens is not important only during the initial diagnosis....

Next-generation sequencing to dynamically detect mechanisms of resistance to *ALK* inhibitors in *ALK*-positive NSCLC patients: a case report

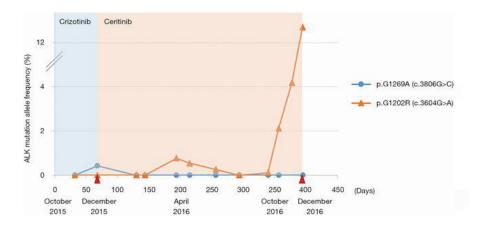
Estela Sánchez-Herrero¹, Mariola Blanco Clemente², Virginia Calvo², Mariano Provencio^{1,2}, Atocha Romero^{1,2}



Cellular ALK Phosphorylation Mean IC ₅₀ (nM)						
Mutation status	Crizotini	Ceritinib	Alectinib	Brigatini b	Lorlatini b	
EML4-ALK	38.6	4.9	11.4	10.7	2.3	
C1156Y	61.9	5.3	11.6	4.5	4.6	
I1171N	130.1	8.2	397.7	26.1	49.0	
I1171S	94.1	3.8	177.0	17.8	30.4	
I1171T	51.4	1.7	33.6	6.1	11.5	
F1174C	115.0	38.0ª	27.0	18.0	8.0	
L1196M	339.0	9.3	117.6	26.5	34.0	
L1198F	0.4	196.2	42.3	13.9	14.8	
G1202R	381.6	124.4	706.6	129.5	49.9	
G1202del	58.4	50.1	58.8	95.8	5.2	
D1203N	116.3	35.3	27.9	34.6	11.1	
E1210K	42.8	5.8	31.6	24.0	1.7	
G1269A	117.0	0.4	25.0	ND	10.0	

A plasma sample was obtained at this time and sequenced on an Ion $S5^{TM}$ Sequencer (Thermo Fisher, Palo Alto, CA) using the Oncomine TM Lung cfDNA Assay NGS panel (Thermo Fisher, Palo Alto, CA) to examine circulating tumor DNA (ctDNA).

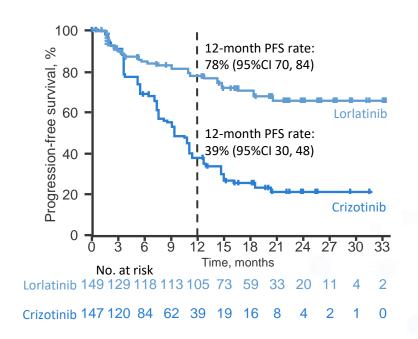
The NGS study revealed the presence of the p.**Gly1269A** (c.3806G>C) resistance mutation in the *ALK* gene (MAF =0.88%)

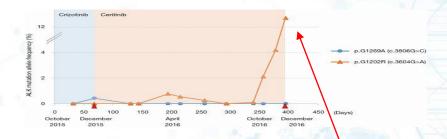

Next, using dPCR, we analyzed the p.Gly1269Ala (c.3806G>C) mutation in a plasma sample collected previously than the former. This technique **did not detect the p.Gly1269Ala** (c.3806G>C) mutation

Next-generation sequencing to dynamically detect mechanisms of resistance to *ALK* inhibitors in *ALK*-positive NSCLC patients: a case report

Estela Sánchez-Herrero¹, Mariola Blanco Clemente², Virginia Calvo², Mariano Provencio^{1,2}, Atocha Romero^{1,2}

Retrospective analysis of all 12 plasma samples collected by dPCR revealed that the p.Gly1202Arg (c.3604G>A) mutation was not present during the crizotinib treatment, but appeared between the fourth and sixth months (April-June 2016) after the start of the ceritinib treatment.


	Cellular ALK Phosphorylation Mean IC ₅₀ (nM)						
Mutation status	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib		
EML4-ALK	38.6	4.9	11.4	10.7	2.3		
C1156Y	61.9	5.3	11.6	4.5	4.6		
I1171N	130.1	8.2	397.7	26.1	49.0		
I1171S	94.1	3.8	177.0	17.8	30.4		
I1171T	51.4	1.7	33.6	6.1	11.5		
F1174C	115.0	38.0ª	27.0	18.0	8.0		
L1196M	339.0	9.3	117.6	26.5	34.0		
L1198F	0.4	196.2	42.3	13.9	14.8		
G1202R	381.6	124.4	706.6	129.5	49.9		
G1202del	58.4	50.1	58.8	95.8	5.2		
D1203N	116.3	35.3	27.9	34.6	11.1		
E1210K	42.8	5.8	31.6	24.0	1.7		
G1269A	117.0	0.4	25.0	ND	10.0		


¹Molecular Oncology Laboratory, Biomedical Sciences Research Institute, ²Medical Oncology Department, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain

LBA2: Lorlatinib vs crizotinib in the first-line treatment of patients (pts) with advanced ALK-positive non-small cell lung cancer (NSCLC): Results of the Phase 3 CROWN study – Solomon B, et al

Key results

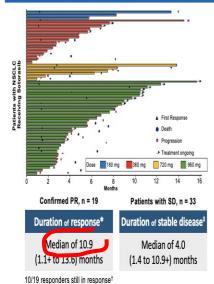
PFS by BICR

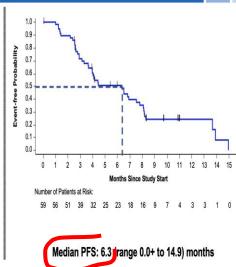
Cellular ALK	Phosphorylation	Mean	IC50	(nM)
--------------	-----------------	------	------	------

Mutation status	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib
EML4-ALK	38.6	4.9	11.4	10.7	2.3
C1156Y	61.9	5.3	11.6	4.5	4.6
I1171N	130.1	8.2	397.7	26.1	49.0
I1171S	94.1	3.8	177.0	17.8	30.4
I1171T	51.4	1.7	33.6	6.1	11.5
F1174C	115.0	38.0ª	27.0	18.0	8.0
L1196M	339.0	9.3	117.6	26.5	34.0
L1198F	0.4	196.2	42.3	13.9	14.8
G1202R	381.6	124.4	706.6	129.5	49.9
G1202del	58.4	50.1	58.8	95.8	5.2
D1203N	116.3	35.3	27.9	34.6	11.1
E1210K	42.8	5.8	31.6	24.0	1.7
G1269A	117.0	0.4	25.0	ND	10.0

Emerging KRAS inhibitors as a potential treatment for KRAS-mutated NSCLC

CodeBreak 100: Responses in Patients With NSCLC


Emerging KRAS inhibitors as a potential treatment for KRAS-mutated NSCLC CodeBreak 100: Responses in Patients With NSCLC


	960 mg (n = 34)	All Patients (n = 59)
Best Overall Response per Investigators' Assessment, n (%) Confirmed Partial Response Stable Disease Progressive Disease Not Evaluable Not Done*	12 (35.3) 19 (55.9) 2 (5.9) 1 (2.9) 0	19 (32.2) 33 (55.9) 5 (8.5) 1 (1.7) 1 (1.7)
Confirmed Objective Response Rate [†] , % (95% CI)	35.3 (19.8, 5 <mark>3</mark> .5)	32.2 (20.6, 45.6)
Disease Control Rate [‡] , % (95% CI)	91.2 (70.5, 98.1)	88.1 (77.1, 95.1)

- Tumor shrinkage of any magnitude from baseline was observed in 42 patients (71.2%) at the first week 6 assessment
- At the 960 mg dose (n = 34), confirmed ORR was 35.3% and DCR was 91.2%
 - 960 mg dose was identified as the Phase II dose in NSCLC

Emerging KRAS inhibitors as a potential treatment for KRAS-mutated NSCLC

CodeBreak™ 100: Duration of clinical benefit and progression-free survival

CR, complete response; NSCLC, non-small cell lung cancer; PFS, progression-free survival; PR, partial response; SD, stable disease.

Hong DS. Oral presentation at European Society of Medical Oncology 2020 Virtual Congress, September 19-21, 2020.

^{*}Duration of response was measured from first evidence of PR/CR to disease progression or death due to any cause, whichever was earlier. †At data cutoff of June 1, 2020.

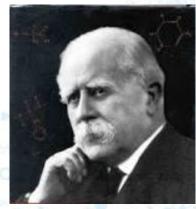
[‡]Duration of SD was measured from the start of the treatment until the criteria for disease progression were met or death, whichever was earlier. + Indicates censored value. Median follow-up time was 11.7 (range 4.8-21.2) months.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

KRAS^{G12C} Inhibition with Sotorasib in Advanced Solid Tumors

- D.S. Hong, M.G. Fakih, J.H. Strickler, J. Desai, G.A. Durm, G.I. Shapiro,
- G.S. Falchook, T.J. Price, A. Sacher, C.S. Denlinger, Y.-J. Bang, G.K. Dy,
- J.C. Krauss, Y. Kuboki, J.C. Kuo, A.L. Coveler, K. Park, T.W. Kim, F. Barlesi,
- P.N. Munster, S.S. Ramalingam, T.F. Burns, F. Meric-Bernstam, H. Henary,
- J. Ngang, G. Ngarmchamnanrith, J. Kim, B.E. Houk, J. Canon, J.R. Lipford,
 - G. Friberg, P. Lito, R. Govindan, and B.T. Li


THE PRECISION MEDICINE INITIATIVE

PRECISION MEDICINE

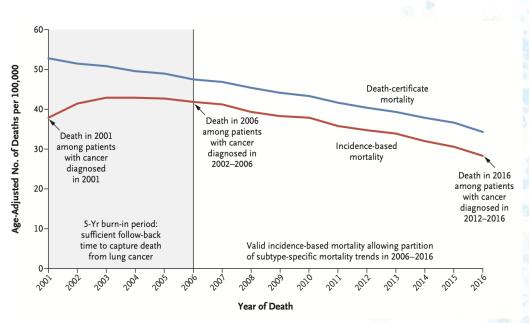
INITIATIVE

PRINCIPLES

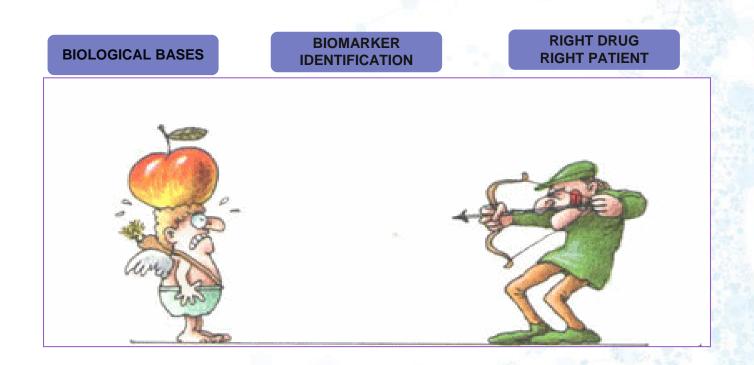
So what is Precision Medicine?

It's health care tailored to you.

In his 2015 State of the Union address,
President Obama announced that he's
launching the Precision Medicine Initiative —
a bold new research effort to revolutionize
how we improve health and treat disease.


Until now, most medical treatments have been designed for the "average patient." As a result of this "one-size-fits-all" approach, treatments can be very successful for some patients but not for others. Precision Medicine, on the other hand, is an innovative approach that takes into account individual differences in people's genes, environments, and lifestyles.

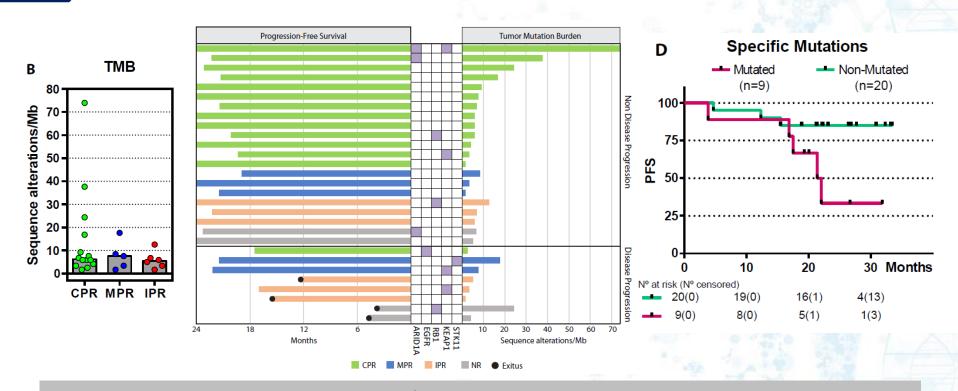
President Obama participates in a panel discussion moderated by Dr. James Hamblin of The Atlantic on the importance of PMI at the White House, February 25, 2016.


The Effect of Advances in Lung-Cancer Treatment on Population Mortality

Nadia Howlader, Ph.D., Gonçalo Forjaz, D.V.M., Meghan J. Mooradian, M.D., Rafael Meza, Ph.D., Chung Yin Kong, Ph.D., Kathleen A. Cronin, Ph.D., Angela B. Mariotto, Ph.D., Douglas R. Lowy, M.D., and Eric J. Feuer, Ph.D.

The Era of Precision in Medicine...

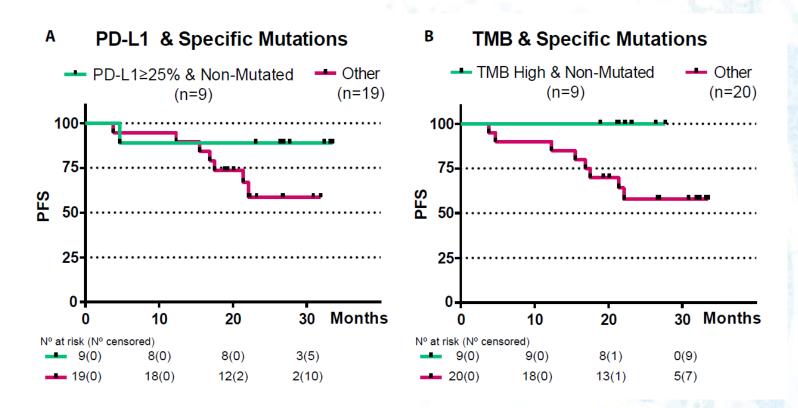
- Cancer: it's more than just a disease
 - We are achieving incredible survival rates
 - NGS: mandatory
- *Genomic testing*: it's a real revolution
 - If we do not look for molecular alterations ... we will not find them ...and it is not precision medicine
 - Explosion of liquid biopsy related publications
 - Resistance mecanisms to known actionable mutations
- New therapy options
 - The really are life changer


The enemy to fight

EXTRA SLIDES

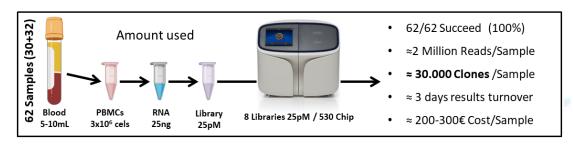
PRECISION MEDICINE STRATEGY

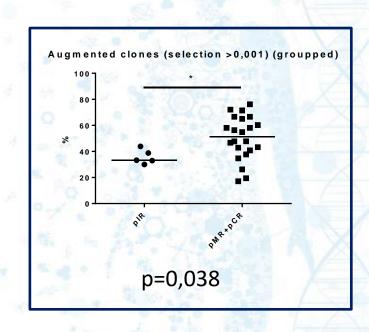
NADIM RESULTS / Specific Mutations



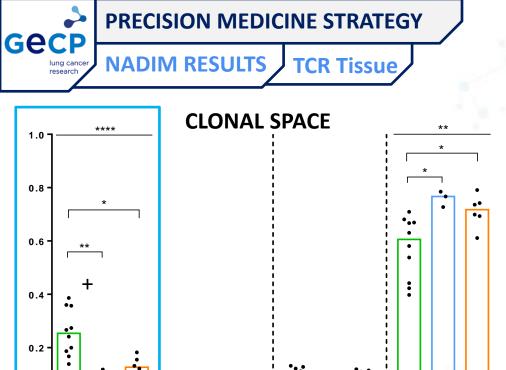
TMB was not associated to pR or PFS/OS but specific mutations were associated to PFS

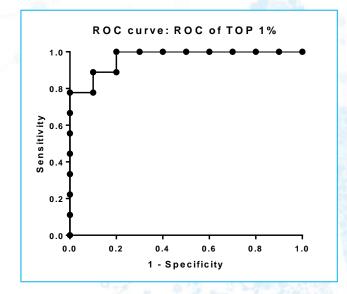
PRECISION MEDICINE STRATEGY


NADIM RESULTS / Specific Mutations


Prediction of Response & TRAEs

TMB, PD-L1 TPS,
Tumor infiltrating Lymphocytes (TILs)
PBMCs populations & Soluble Factors
T-cell & B-Cell Repertoire
Microbiome & Gene expression RNA-seq

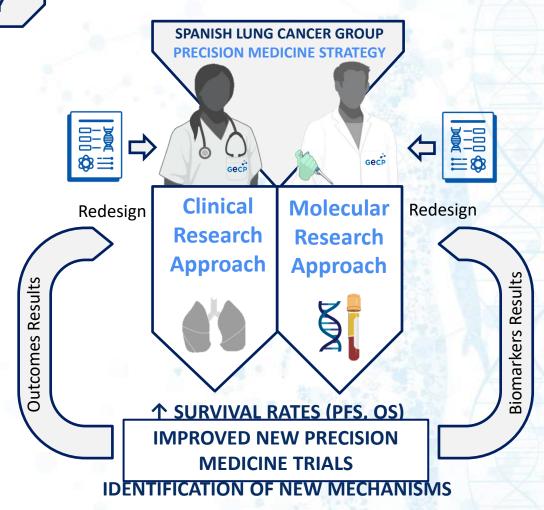



% of clones
that vary its
frequency between
post and pre
treatment samples

The % of clones higher than >0,001 that increase their frequency is associated with pathological responses > 90%

	Prof. 10 10 10 10 10 10 10 10 10 10 10 10 10
Area under the ROC curve	
Area	0.9667
Std. Error	0.03539
95% confidence interval	0.8973 to 1.036
P value	0.0006101

TOP1% Clonal space from Diagnostic FFPE predicts CPR with an AUC of 0.966



PRECISION MEDICINE STRATEGY

CONCLUSIONS

More than 800 Molecular PARAMETERS ANALYSED from NADIM Study:

- ➤ PD-L1 TPS
- Tumor Mutational Burden
- Hemograms
- Specific somatic Mutations
- Multiplex ImmunoFluorescence
- Immunophenotyping of PBMCs
- Cytokines
- > T-Cell Receptor repertoire
- RNAseq expression profile
- Microbiome
- > ctDNA & MRD

