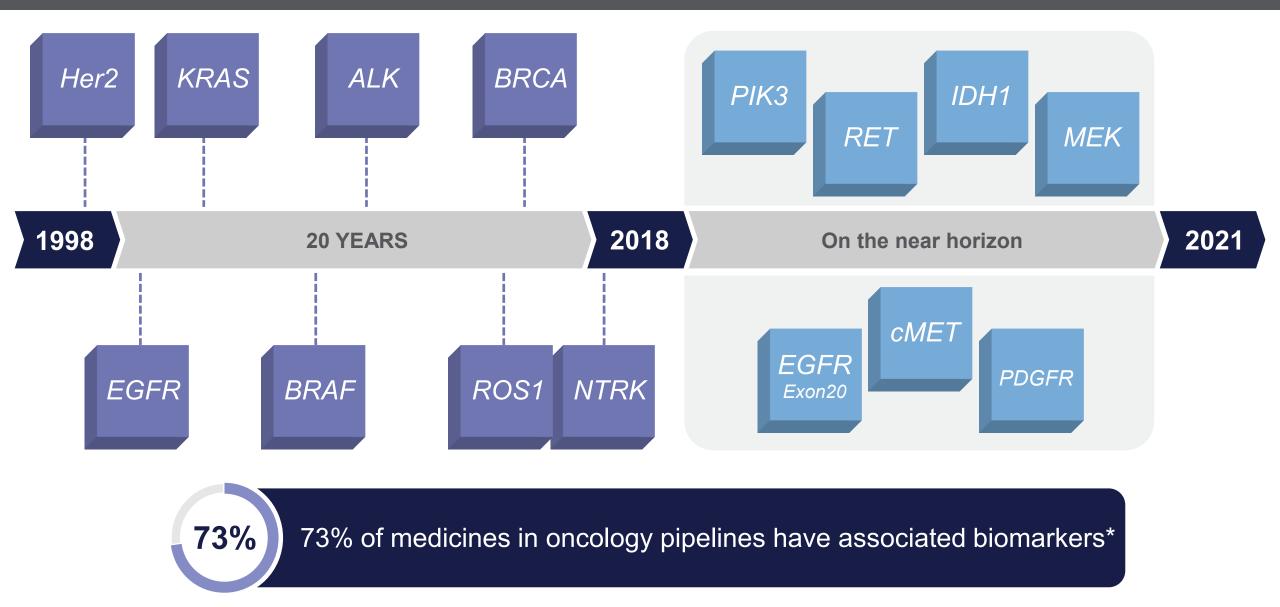

ThermoFisher SCIENTIFIC

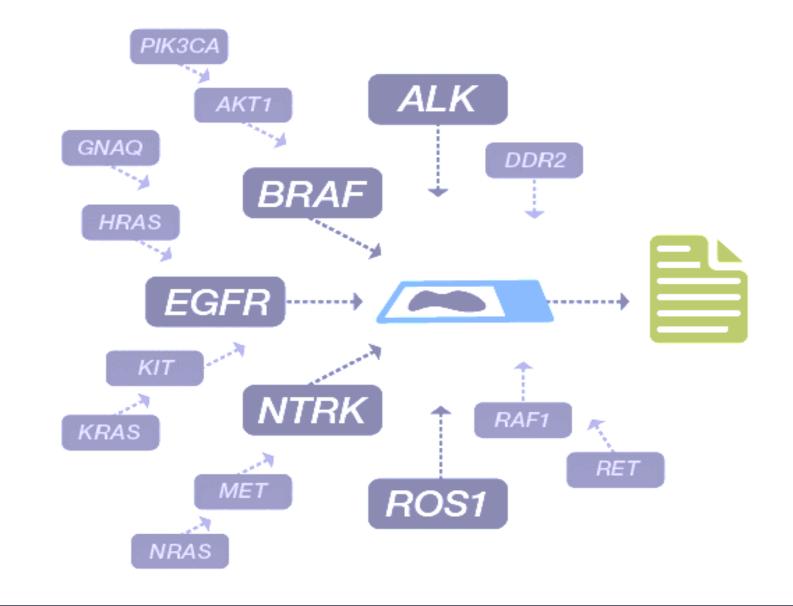
Oncomine Precision Assay on Ion Torrent Genexus System

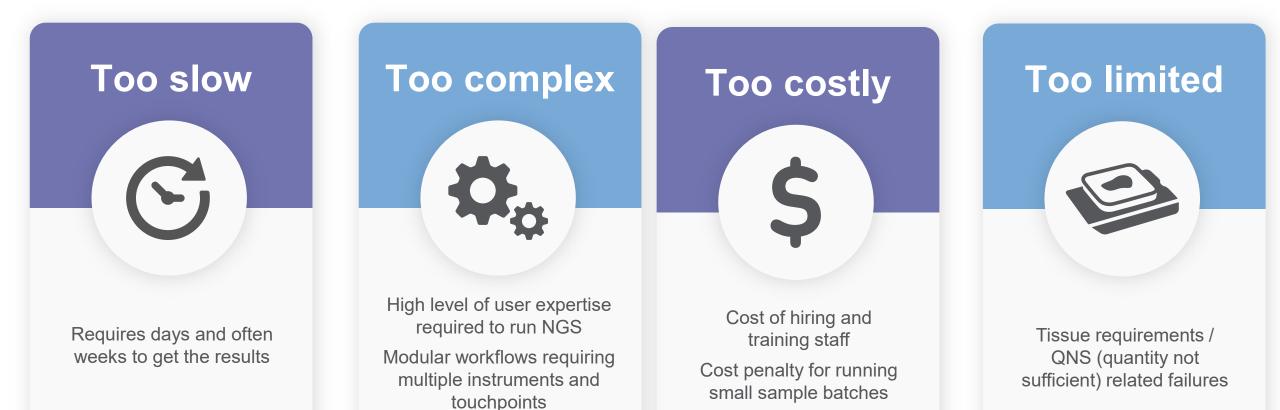
Andy Felton

The Genexus System and its assays are for Research Use Only. Thermo Fisher Scientific is not promoting or encouraging any current diagnostic or clinical use of the Genexus System or any other Research Use Only products discussed in this presentation


Cancer is a Disease of the Genome Caused by its Alterations

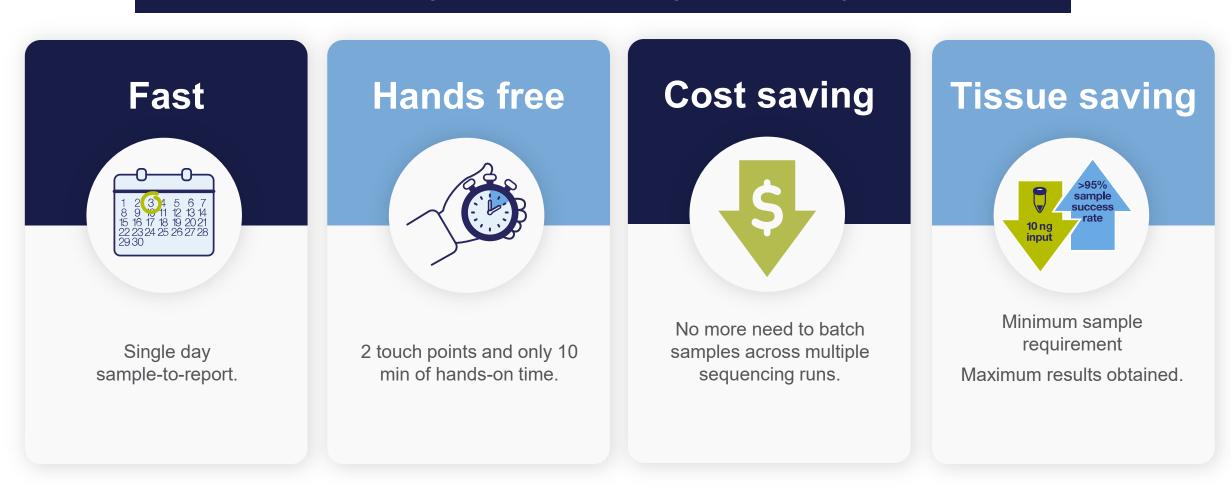
* http://humanbiologylab.pbworks.com/w/page/48192744/Genomes%20%20Finding%20a%20Cure%20for%20Cancer


Biomarker Development is Accelerating


SCIENTIFIC

NGS is a Foundation of Precision Oncology Clinical Research

NGS can detect many different types of biomarkers simultaneously from a single sample



A New Day for Genomic Profiling

Oncomine Precision Assay on Ion Torrent Genexus System

A new generation solution for genomic profiling

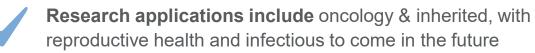
*Specimen-to-report workflow will be available after the Ion Torrent™ Genexus™ Purification System and integrated reporting capabilities are added in 2020. The content provided herein may relate to products that have not been fully validated by Thermo Fisher Scientific and is subject to change without notice.

Introducing Ion Torrent[™] Genexus[™] System

The world's first turnkey, automated NGS system

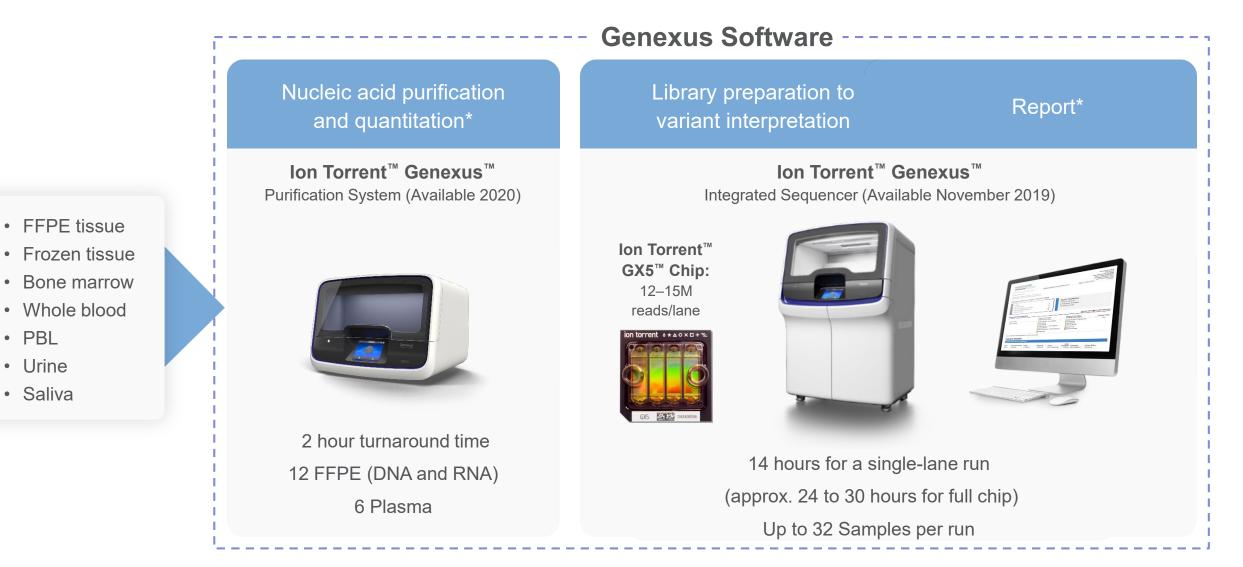
Specimen to report in a single day with only two user touchpoints

Single-day turnaround time allowing you to provide IHC and NGS results at the same time



Automated sample purification, library prep, sequencing, and analysis reporting helps increase reproducibility and efficiency, while reducing personnel costs

Flexibility of economically running few or one sample reduces the need for batching and helps you to deliver results faster then ever before


System and consumables manufactured at a **facilities registered with FDA** and **ISO 13485 certified**

*Specimen-to-report workflow will be available after the Ion Torrent[™] Genexus[™] Purification System and integrated reporting capabilities are added in 2020. The content provided herein may relate to products that have not been fully validated by Thermo Fisher Scientific and is subject to change without notice.

Genexus System—Tomorrow's Specimen-to-Report NGS Workflow

*Specimen-to-report workflow will be available after the Ion Torrent™ Genexus™ Purification System and integrated reporting capabilities are added in 2020. The content provided herein may relate to products that have not been fully validated by Thermo Fisher Scientific and is subject to change without notice.

PBL

Urine

Saliva

Genexus Software—End-To-End Integration from Specimen to Report

Integrated

Fully integrated solution enabling specimen-toreport workflow; no Ion Reporter server required

Easy to use

Simplified, new user experience helps minimize the learning curve and human error

Robust

Benchmarks on variant calling accuracy

Flexible

Option to choose between integrated analysis on instrument or analysis on IR server or cloud

*Specimen-to-report workflow will be available after the Ion Torrent[™] Genexus[™] Purification System and integrated reporting capabilities are added in 2020. The content provided herein may relate to products that have not been fully validated by Thermo Fisher Scientific and is subject to change without notice.

exam	ole .abs			emailé	Example Lai 123 Stri City, ST 12345 U Tel (123) 123-12 Dexamplelabs.co Aexamplelabs.co
Sample ID: 00-1234567	789			Date: 05 Nov 2019	10
Sample Information Year of Birth:	1986			Stomac	
Gender:	Male		Primary Tumor Site: Sample Type:	FFPE	•
Smoking Status: Case Number:	Smoker 00-1234		Sample ID: Date Collected:	1234 02-01-18	3
Sample Cancer	Type: Gastric	Cancer			
Variant Find	ings			Indicated	Contraindicat
Genomic Alteration		Relevant Theraples (In this cancer type)		nt Therapies er canoer type)	Clinical Tri
FGFR1 fusion		None	None		5
Sources included in relevant	therapies: FDA1, NOCH, E	MA ³ , ESMO			
Sources Included in relevant	therapies: FDA ¹ , NOCH, E	MAR, ESMO			
Sources Included in relevant	therapies: FDA ¹ , NOCH, D	MAR, ESMO			
Searces Included in relevant	therapies: FDA ¹ , MODH, D	MAR, ESMO			
Searces Included in relevant	therapiles: FDA1, NOCH, E	MAR, ESMO			
Searces Included in relevant	therapiles: FDA1, MOCH, E	MAR, ESMO			
Seurces Included in relevant	therapike: FDA ¹ , NOCH, B	MAR, ESMO			
Seurces Included in relevant	therapike: FDA ¹ , NOCH, B	MAR, ESMO			

Genexus[™] Integrated Sequencer Maximizes Flexibility

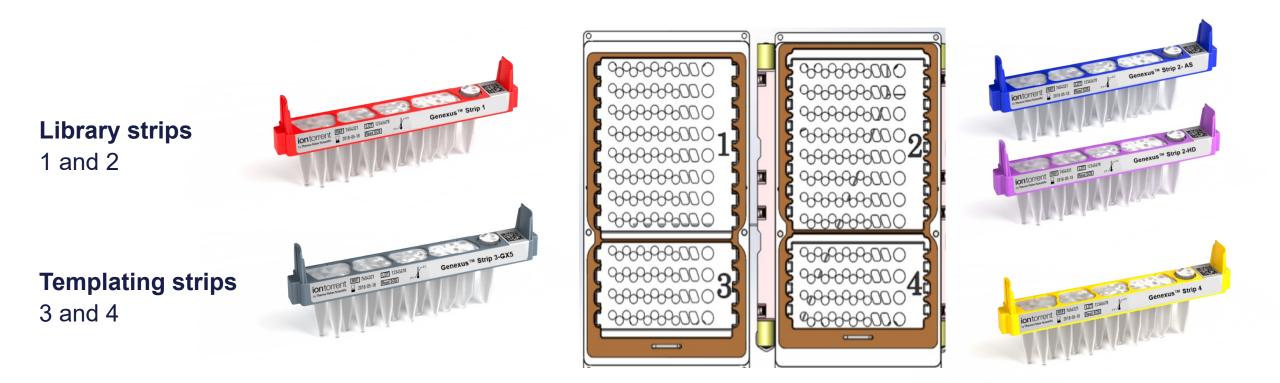
Up to four different assays prepared and sequenced simultaneously in a single run

Multiplexing capability of up to 32 library preparations in a single run

32 single-pool | 16 two-pool | 8 four-pool

Two week on-instrument chip and reagent stability

Assay and throughput flexibility facilitated by strips and multi-lane sequencing chip



Minimized consumable footprint reduces required storage space

The content provided herein may relate to products that have not been fully validated by Thermo Fisher Scientific and is subject to change without notice.

Strips 1 through 4, with descriptors for library chemistry or chip type, are installed in corresponding reagent bays on the deck of the Integrated Sequencer

For Research Use Only. Not for use in diagnostic procedures.

Ion GX5 Chip: 12–15M reads/lane

Genexus[™] Cartridge

Comparison of 4 Workflows

- DL8/Chef/S5
- Manual Library Prep/Chef/S5
- Manual Library Prep/ MiSeq
- Genexus

Users

• 2 novice users and 3 expert AmpliSeq users

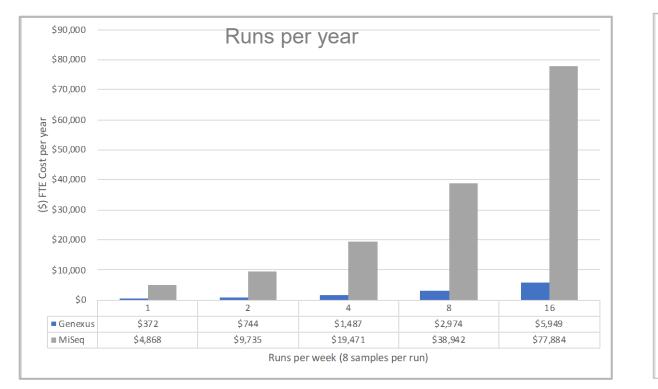
Training

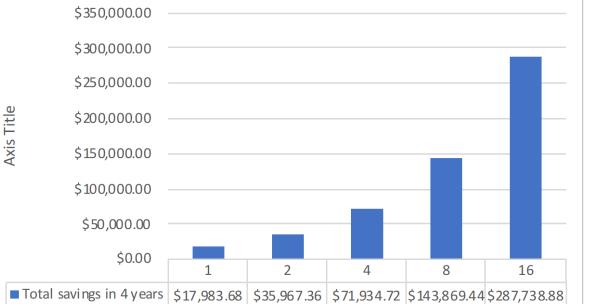
- All users received overview training on ILMN workflow
- All users are novice users of Genexus

Technical Decisions

- 8 libraries were created for each workflow by each operator
- Decision not to use Biomek customers will most likely not use Biomek for only 8 libraries

Comparisons – Total Hands-On Time (Does not include Sample QC)

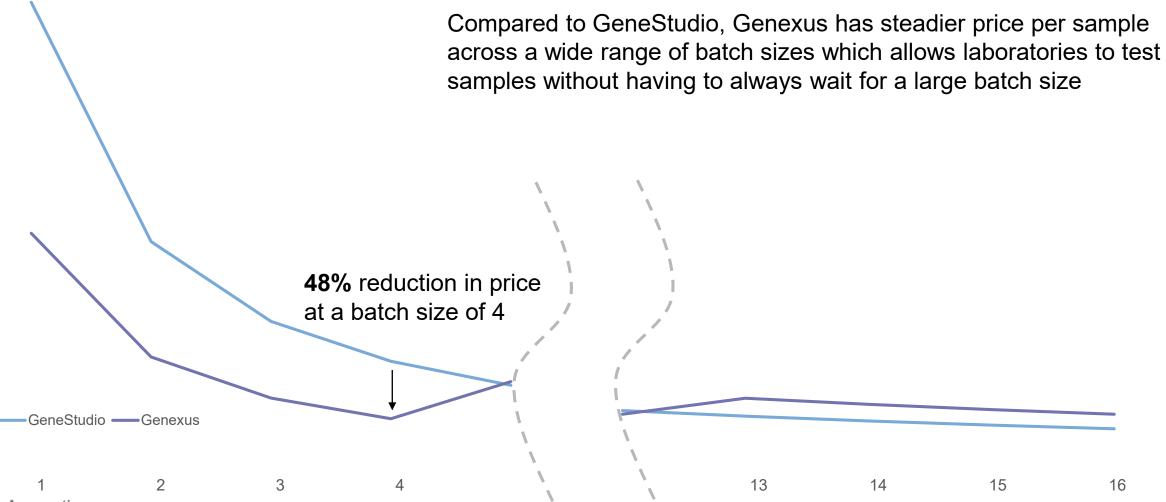

Workflow Comparisons


Manual/Chef/S5 Manual/MiSeq Genexus

Users	Manual/Chef/S5	Manual/MiSeq	Genexus
Operator 1	01:50	02:05	N/A
Operator 2	03:01	03:49	00:12
Operator 1	01:12	02:34	00:12
Operator 2	02:24	03:26	00:14
Operator 3	01:22	02:34	00:14
Average	01:56	02:54	00:13

Workflow Micro-costing Study Results

Total savings in 4 years


- Samples: 8 samples per run (OFA)
- FTE rate: \$33/hr (Glassdoor and Indeed rates for Clinical Lab Tech)
- Genexus FTE cost per run: \$7.15
- MiSeq FTE cost per run: \$93.61 (short of data analysis FTE costs)

Difference between Genexus and MiSeq FTE cost

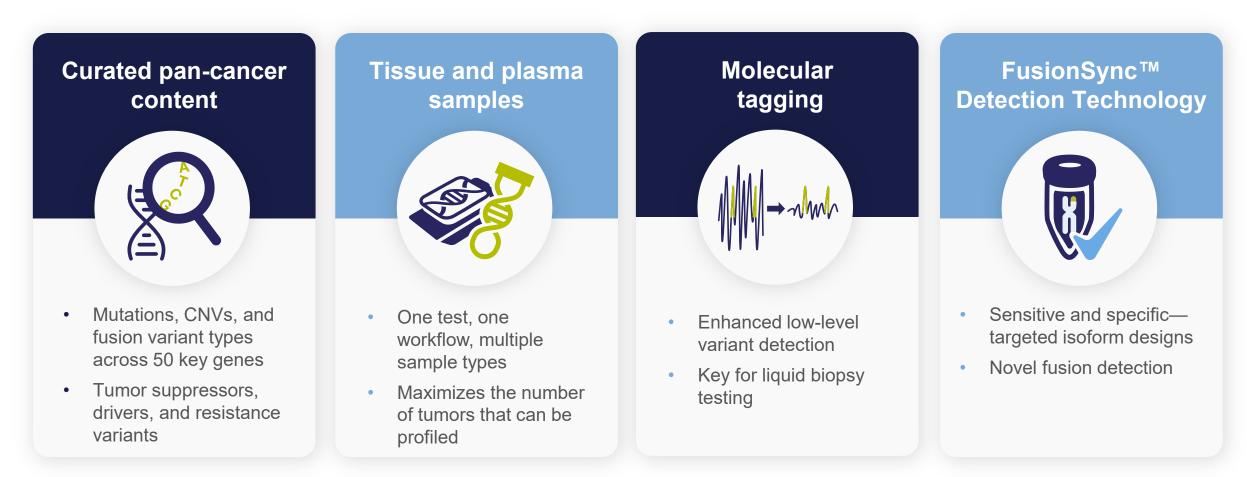
- 52 weeks
- 4 year based on amortization of capital assets

Genexus Is Cost Effective at Low Batch Sizes

Assumptions:

• For Genexus, per sample pricing calculated using list prices for Oncomine Precision Assay with associated Genexus consumables (running FFPE samples)

• For GeneStudio, per sample pricing calculated using list prices for Oncomine Focus Assay with associated GeneStudio S5 consumables (Ion Chef automated library preparation)


Genexus Integrated Sequencer and Assay Turnaround Times

Metric	Assay	1 Lane	2 Lanes	3 Lanes	4 Lanes
Output in	Output in Reads (M)			36-45	48-60
	Custom AmpliSeq 1 Pool Assay	14 (4)	NA	NA	24 (16)
	Oncomine Comprehensive Assay v3 (DNA & RNA workflow)	18.5 (1)	20.5 (3)	27 (4)	29.5 (6)
Turnaround Time (<i>Batch Size</i>) Nucleic Acid to Oncomine Report	Oncomine Precision Assay (cfTNA workflow)	16.5 (1)	17.5 (2)	20 (3)	22.5 (4)
	Oncomine Precision Assay (FFPE workflow)	16.5 (3)	21 (6)	26 (9)	28.5 (12)
	Oncomine TCR Beta-LR Assay	20 (4)	24 (8)	28.5 (12)	31 (<i>16</i>)

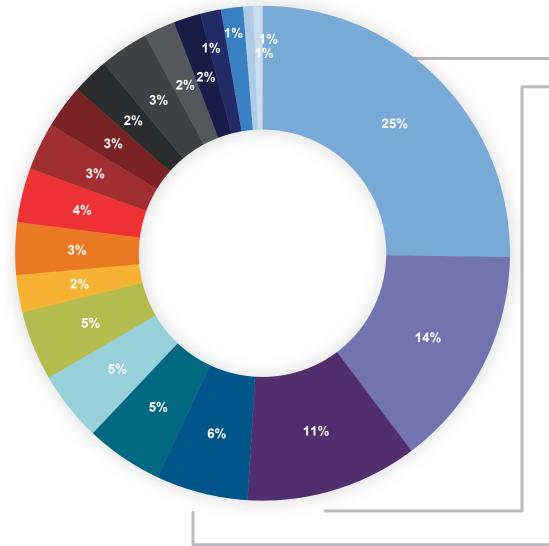
Oncomine Precision Assay on Ion Torrent Genexus System

Maximizes your ability to detect relevant variants

The Oncomine Precision Assay Content

The Oncomine Precision Assay content is carefully curated to include all relevant targets and targets of emerging importance in precision oncology clinical research..

- 50 genes and 2,769 unique variants
- Mutations (45), CNVs (14), and fusion variants (19),
- Pan cancer span with NSCLC focus
- 218 potential resistance mutations across 22 genes

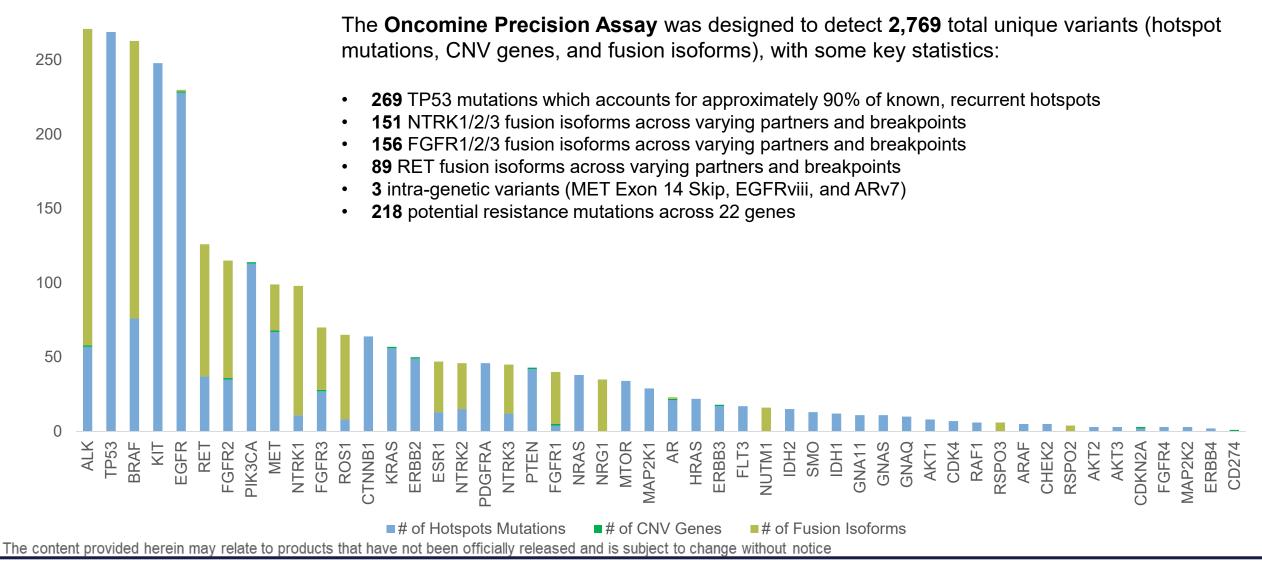


Oncomine Precision Assay Gene Content

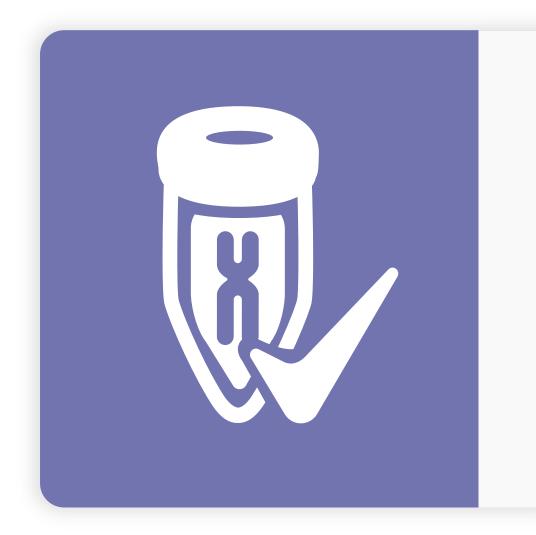
	DNA hotspots		DNA hotspots		CNV		genetic ions	Intra-genetic fusions
AKT1	ESR1	MAP2K2	ALK	ALK	NTRK2	AR		
AKT2	FGFR1	MET	AR	BRAF	NTRK3	BRAF		
AKT3	FGFR2	MTOR	CD274	ESR1	NUTM1	EGFR		
ALK	FGFR3	NRAS	CDKN2A	FGFR1	RET	MET		
AR	FGFR4	NTRK1	EGFR	FGFR2	ROS1			
ARAF	FLT3	NTRK2	ERBB2	FGFR3	RSPO2			
BRAF	GNA11	NTRK3	ERBB3	MET	RSPO3			
CDK4	GNAQ	PDGFRA	FGFR1	NRG1				
CDKN2A	GNAS	PIK3CA	FGFR2	NTRK1				
CHEK2	HRAS	PTEN	FGFR3					
CTNNB1	IDH1	RAF1	KRAS					
EGFR	IDH2	RET	MET					
ERBB2	KIT	ROS1	PIK3CA					
ERBB3	KRAS	SMO	PTEN					
ERBB4	MAP2K1	TP53						

Pan-Cancer Clinical Research Application of OPA

- Non-Small Cell Lung Cancer
- Breast Cancer
- Melanoma
- Gastric Cancer
- Bladder Cancer
- Head and Neck Cancer
- Pancreatic Cancer
- Thyroid Cancer
- Soft Tissue Sarcoma
- Small Cell Lung Cancer


- Unspecified Solid Tumor
- Colorectal Cancer
- Kidney Cancer
- Ovarian Cancer
- Esophageal Cancer
- Endometrial Cancer
- Liver Cancer
- Glioblastoma
- Gastrointestinal Stromal Tumor
- Cervical Cancer

As expected, NSCLC continues to be the most "biomarker-rich" indication

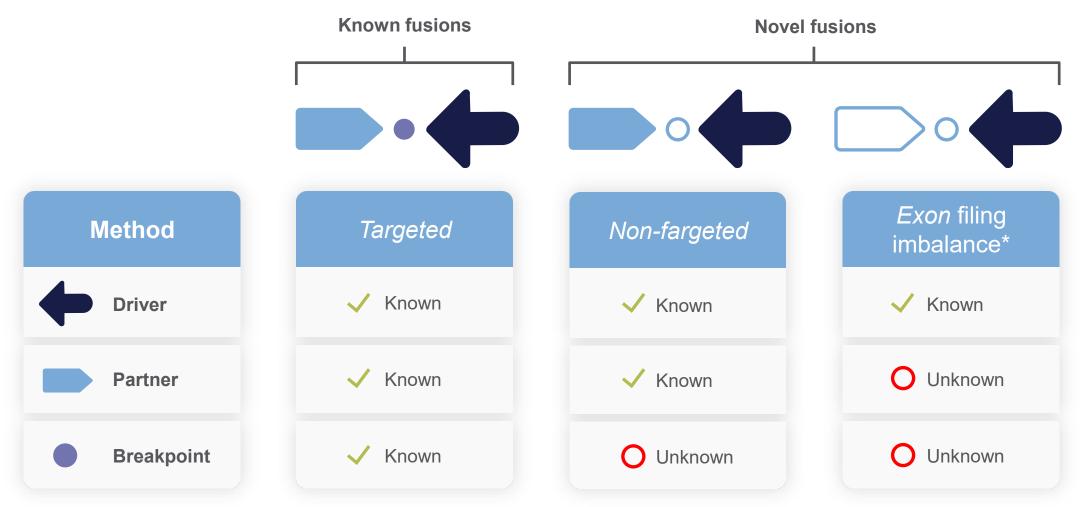


Oncomine Precision Assay Design Details

300

Generally, there are **two** key features for optimal fusion detection:

- 1. Performance of fusion detection with low input samples / low level transcripts
- 2. Ability to detect novel fusions for driver genes (e.g. *NTRK* and *FGFR*)

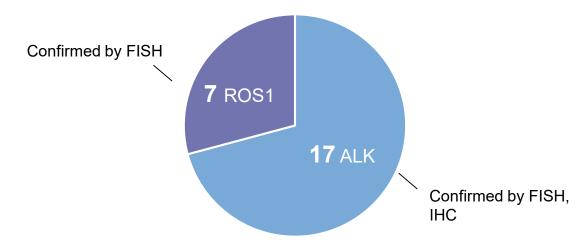

Many similar technologies emphasize #2 above but ignore #1.

With FusionSync[™] detection, we address **BOTH #1 and #2**

FusionSync Detection Technology

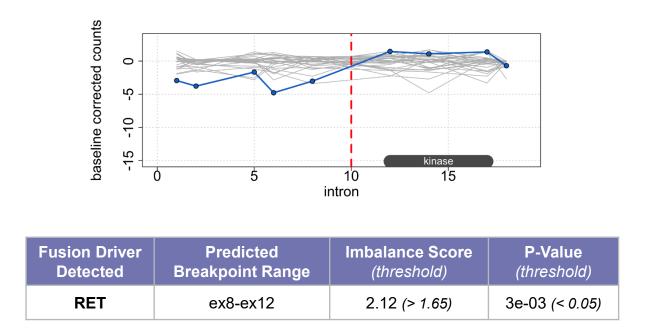
FusionSync Detection Technology is a synchronous approach that combines three methods for sensitive, specific, and broad detection of known and novel fusions

* Available for ALK, FGFR1, FGFR2, FGFR3, NTRK1, NTRK2, NTRK3, and RET fusion drivers


The content provided herein may relate to products that have not been officially released and is subject to change without notice For Research Use Only. Not for use in diagnostic procedures.

FusionSync[™] Detection Using Genexus and Oncomine Precision Assay

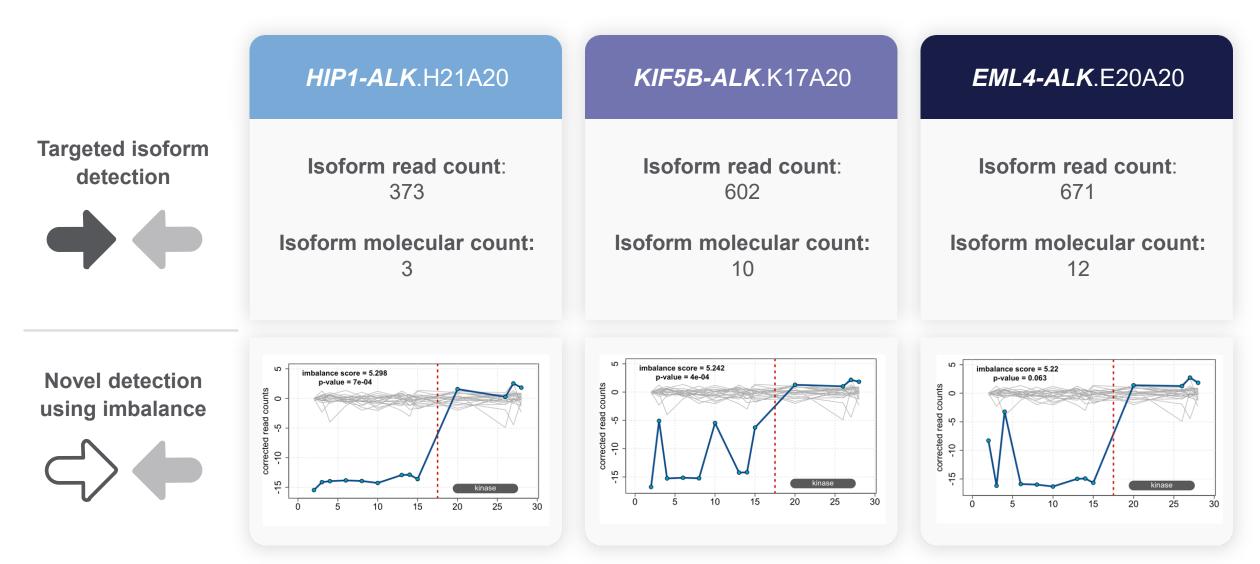
Detection of ALK and ROS1 fusions


24 NSCLC FFPE samples with orthogonally confirmed ALK or ROS1 fusions were tested:

100% agreement in detecting ALK and ROS1 fusions using Oncomine Precision Assay and Genexus

Testing was performed at multiple internal R&D laboratories as part of product verification testing. Samples were run at different plexy levels. Additional verification and validation testing will be performed using the Oncomine Precision Assay and FFPE samples; therefore final performance values can change.

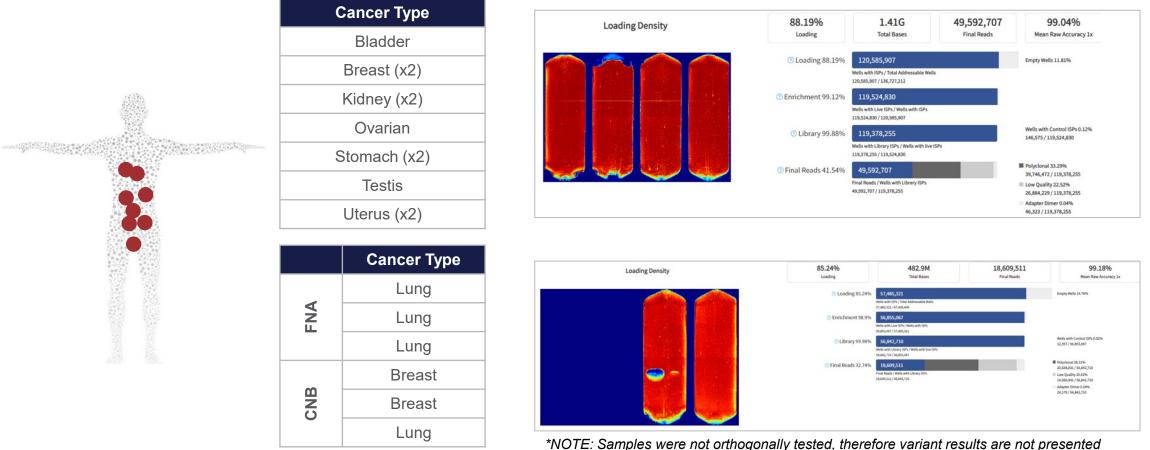
Detection of RET fusion using **exon tiling imbalance**



Testing on LC/2ad cell line that includes CCDC6-RET fusion. Blue line indicates normalized read counts of tiled amplicons across RET, showing a differential expression from the 3' (right) to 5' (left) end of the gene. Collection of grey lines indicate RET expression from fusion wild-type samples, to be used as a baseline comparison to sample RET expression measurement (blue line). Red dotted line indicates predicted break point of RET fusion

The content provided herein may relate to products that have not been officially released and is subject to change without notice For Research Use Only. Not for use in diagnostic procedures.

ALK Example: FusionSync[™] Detection Using Targeted and Novel Detection Methods



FFPE Samples Successfully Tested Using Oncomine Precision Assay

Uncharacterized FFPE samples were included in internal verification testing using the **Oncomine Precision Assay** and **Genexus Integrated Sequencer**. Results demonstrated successful sequencing of different tumor and biopsy types.

NOTE: Testing was performed at multiple internal R&D laboratories as part of product verification testing. Samples were run at different plexy levels. Additional verification and validation testing will be performed using the Oncomine Precision Assay and FFPE samples; therefore final performance values can change.

Performance of Oncomine Precision Assay on Liquid Biopsy Controls

Following are results from internal verification testing using the **Oncomine Precision Assay** and **Genexus Integrated Sequencer** with liquid biopsy controls.

Sample	Description	Range	Variant Type	# of Variants Per Sample	# of Sample Replicates	Sensitivity	PPV
Internel Liquid Dieney Control	Synthetic control across 24		SNV	67	32	89.2%	100%
Internal Liquid Biopsy Control	genes	0.33% <u>+</u> 0.17% SD AF*	INDEL	4	32	100%	100%
Internal Liquid Biopsy Control	Synthetic control that contains <i>EGFR</i> amplification	1.16X fold change	CNV	1	32	100%	100%
Internal Liquid Biopsy Control	Synthetic control that contains <i>MET</i> exon 14 skip	1% Tri-Fusion and <i>MET</i> Exon 14 Skip in Total RNA	FUSION	1	32	97.7%	96.4%

NOTE: Testing was performed at multiple internal R&D laboratories as part of product verification testing. Samples were run at different plexy levels. Additional verification and validation testing will be performed using the Oncomine Precision Assay and FFPE controls; therefore final performance values can change. * indicates observed allele frequency using Oncomine Precision Assay on Genexus.

The following are key variants that were detected using the Oncomine Precision Assay and from cell lines and FFPE samples:

Gene	Variant	Variant Type	Sample Type
EGFR	p.A767_V769dup	Insertion	FFPE
EGFR	p.E746_S752delinsV	Deletion	FFPE
KRAS	G12D	SNV	FFPE
ERBB2 (HER2)	Amplification	CNV	FFPE
ROS1	Fusion	FUSION	FFPE
PTEN	Loss	CNV	Cell Line

NOTE: Testing was performed at multiple internal R&D laboratories as part of product verification testing. Samples were run at different plexy levels. Additional verification and validation testing will be performed using the Oncomine Precision Assay and FFPE samples; therefore final performance values can change.

Detection of ALK and ROS1 Fusions in FFPE Samples

Sample #	FISH	ІНС	OPA on Genexus	Agreement	Imbalance	P-Value	Breakpoint	Concordance
1	ALK	ALK	EML4-ALK	YES	5.313	0.0007	exon15-exon20	YES
2	ALK	ALK	EML4-ALK	YES	3.969	0.0007	exon14-exon15	YES
3	ALK	ALK	EML4-ALK	YES	5.021	0.0007	exon15-exon20	YES
4	ALK	ALK	EML4-ALK	YES	5.313	0.0007	exon15-exon20	YES
5	ALK	ALK	EML4-ALK	YES	5.273	0.0007	exon15-exon20	YES
6	ALK	ALK	EML4-ALK	YES	3.033	0.0007	exon10-exon13	YES
7	ALK	ALK	EML4-ALK	YES	5.189	0.0007	exon15-exon20	YES
8	ALK	ALK	EML4-ALK	YES	5.276	0.0007	exon15-exon20	YES
9	ALK	ALK	EML4-ALK	YES	5.034	0.005	exon15-exon20	YES
10	ALK	ALK	EML4-ALK	YES	5.126	0.0007	exon15-exon20	YES
11	ALK	ALK	EML4-ALK	YES	5.171	0.0007	exon15-exon20	YES
12	ALK	ALK	EML4-ALK	YES	4.757	0.0007	exon15-exon20	YES
13	ALK	ALK	EML4-ALK	YES	4.88	0.001	exon15-exon20	YES
14	ALK	ALK	EML4-ALK	YES	3.688	0.0007	exon15-exon20	YES
15	ALK	ALK	EML4-ALK	YES	5.257	0.0007	exon15-exon20	YES
16	ALK	ALK	HIP1-ALK	YES	5.145	0.0007	exon15-exon20	YES
17	ALK	ALK	EML4-ALK	YES	4.059	0.0007	exon14-exon15	YES
18	ROS1	N/A	CD74-ROS1	YES	N/A	N/A	N/A	N/A
19	ROS1	N/A	EZR-ROS1	YES	N/A	N/A	N/A	N/A
20	ROS1	N/A	EZR-ROS1	YES	N/A	N/A	N/A	N/A
21	ROS1	N/A	EZR-ROS1	YES	N/A	N/A	N/A	N/A
22	ROS1	N/A	CD74-ROS1	YES	N/A	N/A	N/A	N/A
23	ROS1	N/A	CD74-ROS1	YES	N/A	N/A	N/A	N/A
24	ROS1	N/A	SDC4-ROS1	YES	N/A	N/A	N/A	N/A

24 FFPE samples (NSCLC) were tested with the **Oncomine Precision Assay** on **Genexus Integrated Sequencer**.

These samples were previously tested using **FISH** and **IHC** (*ALK* only), and determined to be either *ALK* or *ROS1* fusion positive.

Verification results showed **100% agreement** when using the Oncomine Precision Assay compared to both methods,

In addition, all 17 *ALK* positive samples had concordant detection using the exon tiling imbalance method.

NOTE: ROS1 does not have exon tiling imbalance capability on Oncomine Precision Assay.

NOTE: Testing was performed at multiple internal R&D laboratories as part of product verification testing. Samples were run at different plexy levels. Additional verification and validation testing will be performed using the Oncomine Precision Assay and FFPE samples; therefore final performance values can change.

The content provided herein may relate to products that have not been officially released and is subject to change without notice 33 For Research Use Only. Not for use in diagnostic procedures.

Complete Detection of NTRK Isoforms Using SeraCare FFPE Control

care

sera

SeraSeg® FFPE NTRK Fusion RNA **Reference Material** TPM3(7) - NTRK1(10) **Oncomine Precision Assay Detects All NTRK Isoforms** LMNA(11) - NTRK1(11) ✓ IRF2BP2(1) - NTRK1(10) ✓ SQSTM1(5) - NTRK1(10) ✓ TFG(5) - NTRK1(10) AFAP1(14) - NTRK2(12) NACC2(4) - NTRK2(13) ✓ QKI(6) - NTRK2(16) TRIM24(12) - NTRK2(15) PAN3(1) - NTRK2(17) ETV6(4) - NTRK3(14) ETV6(4) - NTRK3(15) ETV6(5) - NTRK3(14) ETV6(5) - NTRK3(15) BTBD1(4) - NTRK3(14)

Metric	5% Dilution
# of Runs	30
# of NTRK Fusion Isoforms	15
# of Total Datapoints	450
False Negative	4
False Positive	4
Sensitivity	99.1%
PPV	100%

- The SeraCare SeraSeq® FFPE NTRK Fusion RNA Reference Material (01710-1031) contains 15 unique NTRK isoforms (5 NTRK1, 5 NTRK2, and 5 NTRK3).
- A 5% dilution (within a normal background) of the NTRK control was made to reduce the transcript levels of the various fusion isoforms.
- The dilution was tested with multiple replicates using the **Oncomine Precision Assay** and the **Genexus Integrated Sequencer.**
- Verification results showed ability of the assay to detect all 15 NTRK fusions using the targeted isoform designs and measuring the read counts for each isoform.
- Replicate testing demonstrated high sensitivity and specificity at 5% dilutions above 33 fusion reads.

NOTE: Testing was performed at multiple internal R&D laboratories as part of product verification testing. Samples were run at different plexy levels, resulting in an average mapped RNA reads of 190,972 for the 10% dilution dataset and an average mapped RNA reads of 691,064 for the 5% dilution dataset. Additional verification and validation testing will be performed using the Oncomine Precision Assay and SeraCare NTRK control; therefore final performance values can change.

Detection of ALK, FGFR3, NTRK1, and RET Fusions Using Exon Tiling Imbalance

	Fusion driver	Sample	Predicted breakpoint range	Imbalance score	P-value
kinase 20 25 30	ALK	Tri-Fusion Cell Line Mixture with <i>ALK</i> , <i>RET</i> , and <i>ROS1</i> fusions	ex15-ex20	4.74	7e-04
3UTR 15 20	FGFR3	RT4 cell line	ex13-3pUTR	1.74	3.9e-03
kinase 15	NTRK1	KM12 cell line	ex6-ex13	2.58	4.3e-03
kinase 15	RET	Tri-Fusion Cell Line Mixture with <i>ALK</i> , <i>RET</i> , and <i>ROS1</i> fusions	ex8-ex12	2.12	3e-03

The content provided herein may relate to products that have not been officially released and is subject to change without notice

normed. read counts -20 -10 0

normed. read counts -10 -6 -2 2

read coun -2

-10 -6

read counts -2 2

-10 -6

Ó

Ó

ó

10

15

intron

10 intron

10

intron

10

intron

5

	SNV/INDEL	CNV	Fusions
Sensitivity	98.3%	97.2%	97.6%
PPV	99.0%	N/A	99.6%
Inter-run reproducibility	98.6%	97.8%	95.7%
Intra-run reproducibility	98.6%	96.7%	95.9%

SNV and INDEL performance was assessed using Acrometrix Hotspot Control and SeraCare Seraseq Tri-Level Mutation DNA Mix CNV performance was assessed using SeraCare CNV controls Fusion performance was assessed using Horizon HD789 and SeraCare Fusion Mix v3, Horizon HD784 ALK, and LC/2 ad cell line

Now is the time to start with NGS with...

One day Ion Torrent Genexus workflow*

Complete automation from specimen to report and only 10 min hands on time*

No need for batching

First in class implementation support

...and get key 50 gene NGS profile result in the same time as your IHC for comprehensive profile

*Specimen-to-report workflow will be available after the Ion Torrent™ Genexus™ Purification System and integrated reporting capabilities are added in 2020. The content provided herein may relate to products that have not been fully validated by Thermo Fisher Scientific and is subject to change without notice.

The **Ion Torrent[™] Genexus[™]** is currently Research Use Only, however "Thermo Fisher Scientific intent to seek regulatory marketing authorization of the system so that it can be potentially made available in every clinical setting. Additionally we also plan to develop and seek approval for a broad portfolio of diagnostic assays in oncology.

The **Ion Torrent[™] Genexus[™]** has been developed with the intent to shift the cancer testing paradigm in the future, that is what we worked for and will keep on working for".

Thank you Q&A

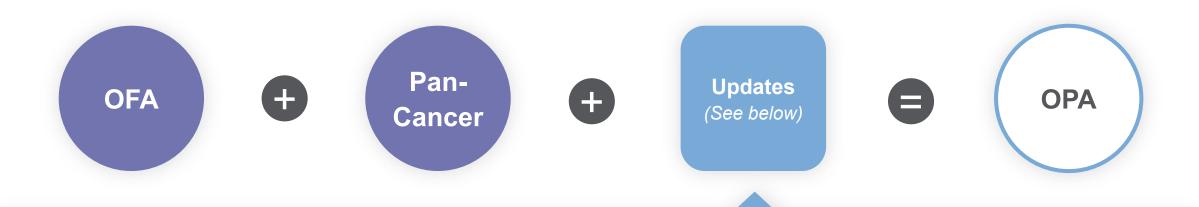
The world leader in serving science

ThermoFisher SCIENTIFIC

For Research Use Only © 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Approval: 5748

The world leader in serving science

Kit Configuration, Throughput and Pricing



The world leader in serving science

		551 KOMPETER	551 COMPANY	551 (MARKET)	551 COMPARENT
	Assay	1 Lane	2 Lanes	3 Lanes	4 Lanes
Max Number of Samples	Oncomine Precision Assay (for DNA & RNA workflow)	4	8	12	16
Max Nu Sarr	Oncomine Precision Assay (for cfTNA workflow)	1	2	3	4

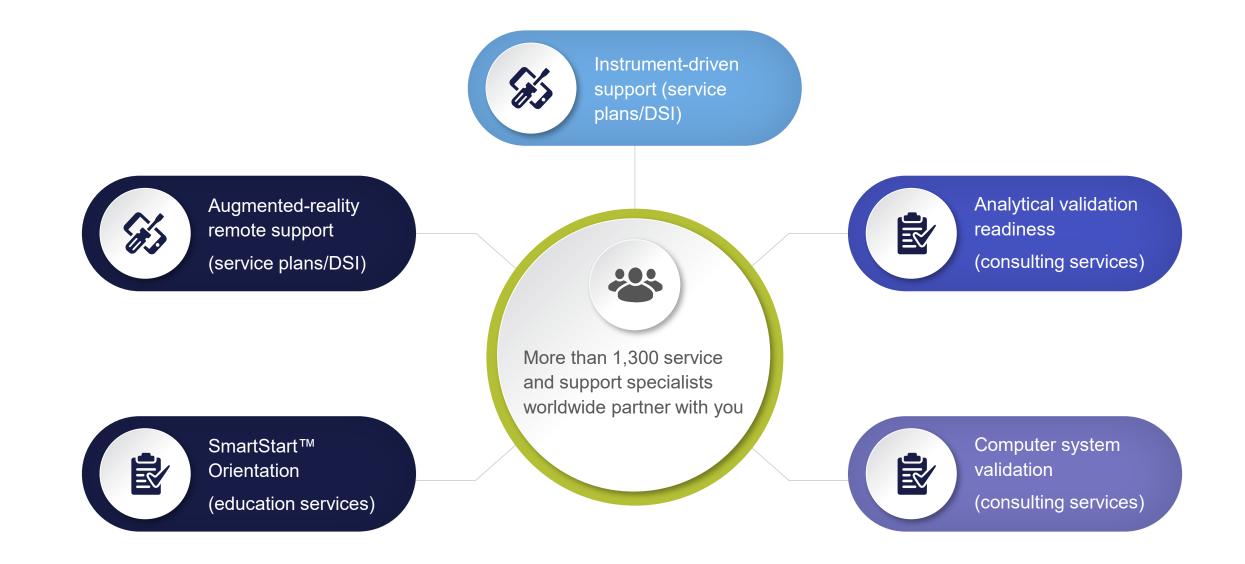
OPA Content – Progression on Other Oncomine Assays

Swap genes, emphasis on potential for future targeted therapies research

Examples: NRG1 fusions PTEN loss AKT2/3 mutations Increased fusion isoforms and exon tiling imbalance

NTRK isoforms **31** (OFA)→**150** (OPA) Imbalance: ALK, FGFR1, FGFR2, FGFR3, NTRK1, NTRK2 NTRK3, RET

Resistance mutations


ALK, AR, EGFR, ERBB2, ERBB3, ESR1, FGFR1, FGFR2, FLT3, IDH1, IDH2, KIT, MAP2K1, MAP2K2, MET, NTRK1, NTRK2, NTRK3, PDGFRA, RET, ROS1, SMO

The content provided herein may relate to products that have not been officially released and is subject to change without notice

At Launch		January 2020		2020 and beyond
Custom Ion AmpliSeq HD Panels	Ion Torrent ™ Oncomine™ Precision Assay	Ion Torrent [™] Oncomine [™] Comprehensive Assay v3	lon Torrent [™] Oncomine [™] TCR Beta-LR Assay	Oncomine Myeloid Research Assay
Custom Ion AmpliSeq Panels				Oncomine <i>BRCA</i> Research Assay
Ion AmpliSeq On-Demand Panels	Single assay to test common biomarkers from FFPE tissue	Testing of common and rare biomarkers	Translational and clinical research	More assays to come
	and liquid biopsy samples	Clinical trials	Immuno-oncology research	

Now is the time to start with NGS with...

One day Ion Torrent Genexus workflow*

Complete automation from specimen to report and only 10 min hands on time*

No need for batching

First in class implementation support

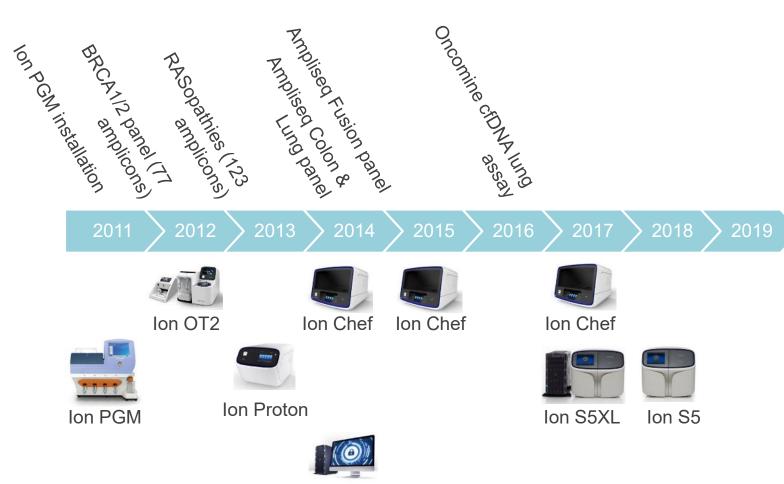
...and get key 50 gene NGS profile result in the same time as your IHC for comprehensive profile

*Specimen-to-report workflow will be available after the Ion Torrent™ Genexus™ Purification System and integrated reporting capabilities are added in 2020. The content provided herein may relate to products that have not been fully validated by Thermo Fisher Scientific and is subject to change without notice.

First Experience from the "New World"

The Pathologist - Webinar 5th December 2019 *José Luis Costa* (jcosta@ipatimup.pt)

Ipatimup – Porto - Portugal


- Biggest research in health institute in Portugal (1250 researchers);
- Cancer, Neurosciences and Host-Pathogen interactions research lines

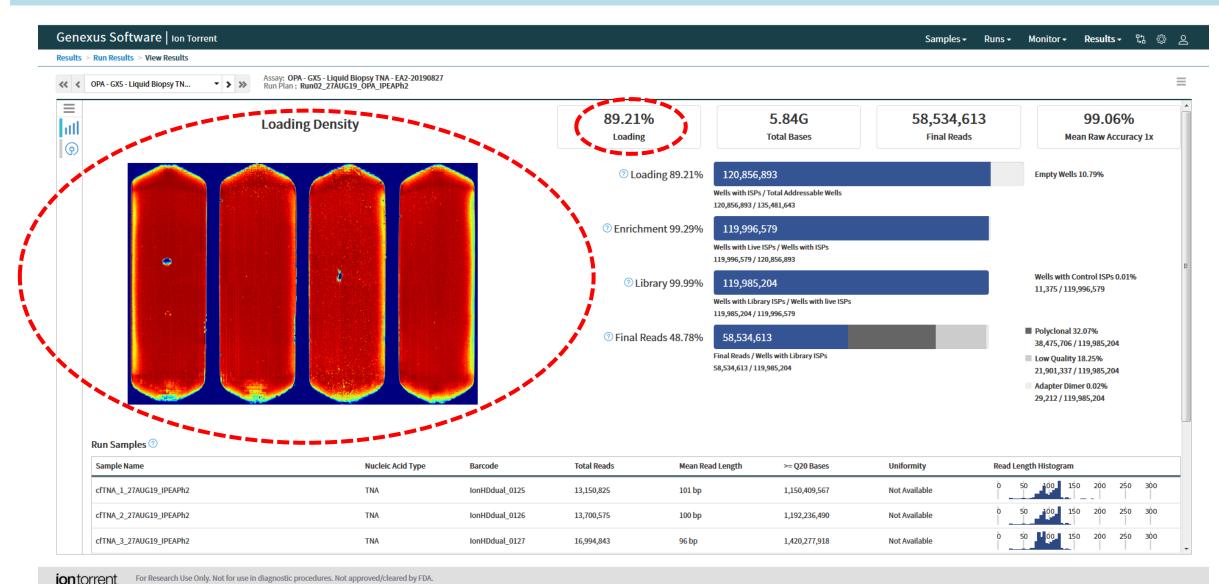
- Founding member of i3S
- Leading cancer research institute in Portugal
- Founding partner of Porto Comprehensive Cancer Center

NGS clinical research timeline....

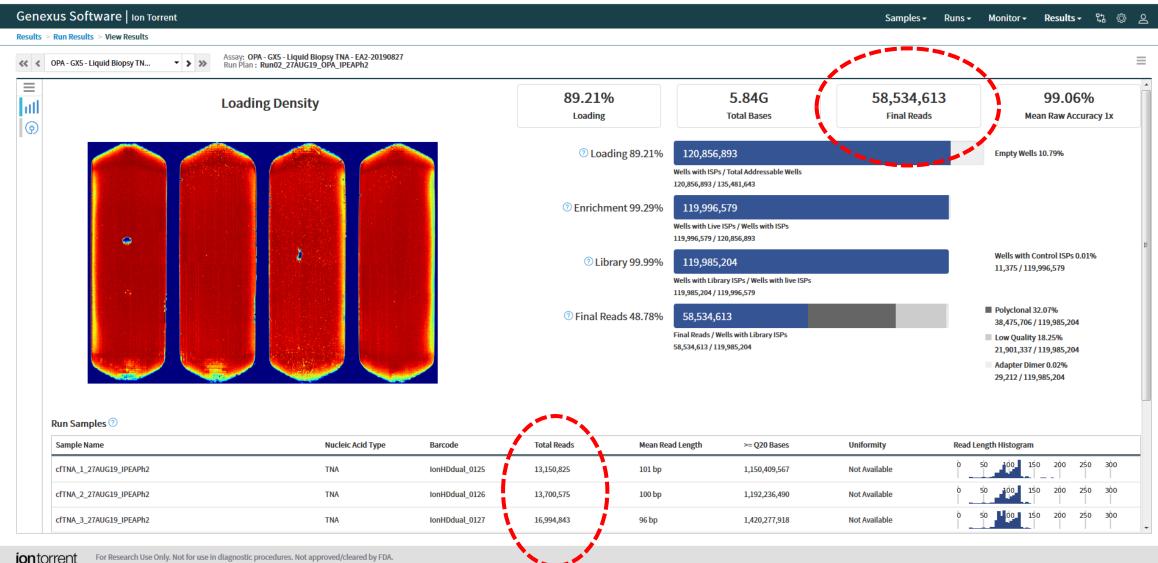
Genexus System

Ion Reporter

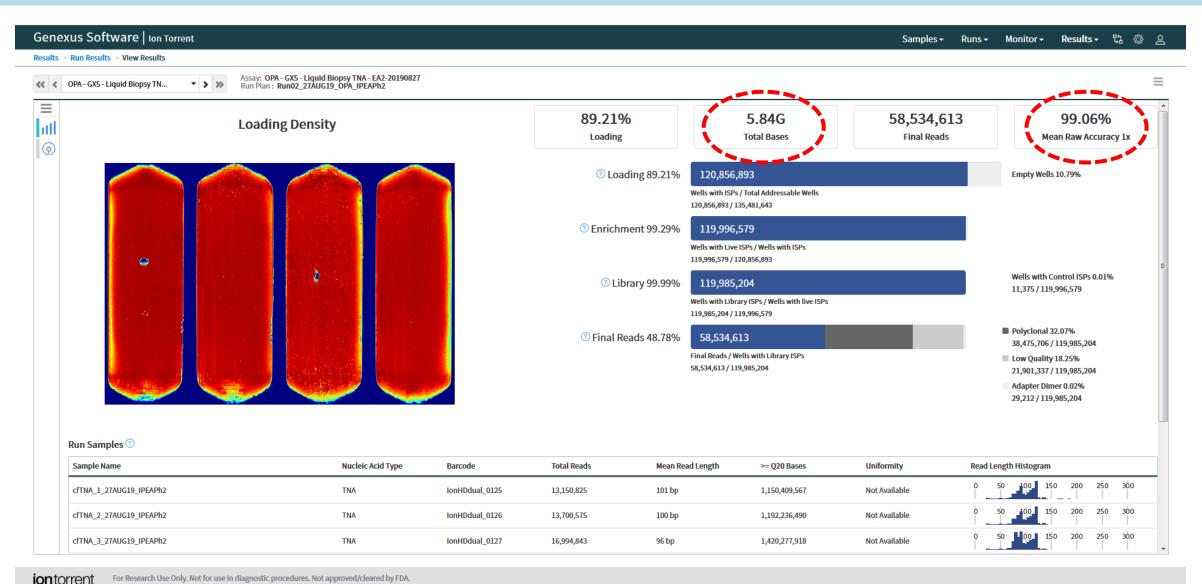
Commercial control samples


Horizon and SeraCare FFPE and cfDNA reference material

Clinical research samples


- Lung cancer tissue and liquid biopsy research samples
- Previously characterize on an Ion S5XL system

exus Software Ion Torrent						Samples -	Runs - Monitor - Results - ६७ 🐇
> Run Results > View Results							
OPA - GX5 - Liquid Biopsy TN 🝷	Assay: OPA - GX5 - Liquid Biopsy TNA - EA2-201908 Run Plan : Run02_27AUG19_OPA_IPEAPh2	27					
	Loading Density		89.219 Loading	ό	5.84G Total Bases	58,534,6 Final Read	
			🔊 Load	ding 89.21% 120,856 Wells with ISP 120,856,893 /	es / Total Addressable Wells		Empty Wells 10.79%
			⑦ Enrichn	nent 99.29% 119,996 Wells with Live	e ISPs / Wells with ISPs		
•	8		⑦ Lib	rary 99.99% 119,985	,204 rary ISPs / Wells with live ISPs		Wells with Control ISPs 0.01% 11,375 / 119,996,579
			⑦ Final Re	eads 48.78% 58,534, Final Reads / V 58,534,613 / 1	Wells with Library ISPs		 Polyclonal 32.07% 38,475,706 / 119,985,204 Low Quality 18.25% 21,901,337 / 119,985,204 Adapter Dimer 0.02%
Run Samples ⑦ Sample Name	Nucleic Acid Type	Barcode	Total Reads	Mean Read Length	≻= Q20 Bases	Uniformity	29,212 / 119,985,204 Read Length Histogram
cfTNA_1_27AUG19_IPEAPh2	TNA	IonHDdual_0125	13,150,825	101 bp	1,150,409,567	Not Available	0 50 100 150 200 250 300
cfTNA_2_27AUG19_IPEAPh2	TNA	IonHDdual_0126	13,700,575	100 bp	1,192,236,490	Not Available	0 50 100 150 200 250 300
							0 50 00 150 200 250 300


iontorrent by Thermo Fisher Scientific 2019 Thermo Fisher Scientific. All Rights Reserved. Ion Torrent Genexus Software 5.107.14.

For Research Use Only. Not for use in diagnostic procedures. Not approved/cleared by FDA. by Thermo Fisher Scientific © 2019 Thermo Fisher Scientific. All Rights Reserved. Ion Torrent Genexus Software 5.107.14.

by Thermo Fisher Scientific © 2019 Thermo Fisher Scientific, All Rights Reserved, Ion Torrent Genexus Software 5,107,14.

For Research Use Only. Not for use in diagnostic procedures. Not approved/cleared by FDA. by Thermo Fisher Scientific © 2019 Thermo Fisher Scientific. All Rights Reserved. Ion Torrent Genexus Software 5.107.14.

Gene	xus Softwa	re Ion Torrent						Sar	nples - Run	s - Monitor	• Results •	යා © උ
Results	> Run Results > Vi	ew Results										
« «	cfTNA_1_27AUG19	_IPEAPh2 V	QC Status : V	issay: OPA - GX5 - Liquid Biopsy T Run Plan : Run02_27AUG19_OPA_	NA - EA2-20190827 IPEAPh2							=
	Sample Details	S						Metrics 🕜				
ull	Sample Name:		cfTNA_1_27AUG19_IPEA	Ph2	Collection Date:	23 AUG 2019		Average Base Coverage Depth	:	Not Available		
<u>§</u>	Gender:		Unknown		Sample Type:	cfTNA		Uniformity Of Base Coverage:		Not Available		
X	Disease Category:		Cancer		Cancer Type:	Unknown Primary Origin		% Base Reads On Target:		Not Available		
Å	Cancer Stage:		Unknown		% Cellularity:	null		Median Molecular Coverage:		2253		
₩								Median Read Coverage:		26148		
Š Š	Variant Summ	ary										
Ģ	A default filter has	been applied. Go to SNV	/s/Indels, Fusions, CNVs pag	es to remove or modify variant filte	ır.							
	Filter Chain Applie	d: <i>Variant Matrix tab Sur</i>	nmary									
	SNVs/Indels 6 Detected				Fusions 5 Detected			CNVs 2 Detected				
	Gene	AA Change	Mol Freq %	Oncomine Variant	Oncomine Driver Gene	Evidence Level		Gene	Gain/Loss		Oncomine Variant C	lass
				Class	MET	Targeted Isoforms	A	EGFR	↑		Amplification	*
	ERBB3	p.E332K	3.7131	Hotspot	ALK	Targeted Isoforms		AR	\downarrow			-
	KRAS	p.A59T	0.1335	Hotspot	BRAF	Targeted Isoforms						
	KRAS	p.G12A	2.6452	Hotspot	RET	Targeted Isoforms						
	MET	p.?	0.263	Hotspot	ROS1	Targeted Isoforms	~					
	TP53	p.R248L	1.4074	Hotspot								
	TP53	p.S241C	0.1141	Hotspot								

cfTNA_1_27AUG19		» QC Status :	ssay: OPA - GX5 - Liquid Biopsy un Plan : Run02_27AUG19_OPA							
Sample Details	•						Metrics 🕐			
Sample Name:		cfTNA_1_27AUG19_IPEAP	h2	Collection Date:	23 AUG 2019		Average Base Coverage Depth:	Not A	Available	
Gender:		Unknown		Sample Type:	cfTNA		Uniformity Of Base Coverage:	Not A	Available	
Disease Category:		Cancer		Cancer Type:	Unknown Primary Origin		% Base Reads On Target:	Not A	Available	
Cancer Stage:		Unknown		% Cellularity:	null		Median Molecular Coverage:	2253	3	
							Median Read Coverage:	2614	18	
Variant Summa	ary									
Filter Chain Applie SNVs/Indels 6 Detected	d: Variant Matrix tab Summ	mary	(Fusions 5 Detected			CNVs 2 Detected			
SNVs/Indels	d: Variant Matrix tab Sumr	Mol Freq %	Oncomine Variant		Evidence Level		2 Detected	Gain/Loss	Oncomine Variant C	lass
SNVs/Indels 6 Detected Gene	AA Change	Mol Freq %	Class	5 Detected Orconnie Driver Gene MET	Targeted Isoforms	A	2 Detected Gene EGFR	1	Oncomine Variant C Amplification	lass
SNVs/Indels 6 Detected				5 Detected Oricomme Driver Gene MET ALK	Targeted Isoforms Targeted Isoforms		2 Detected			Class
SNVs/Indels 6 Detected Gene ERBB3	AA Change p.E332K	Mol Freq % 3.7131	Class Hotspot	5 Detected Orecomme Driver Gene MET ALK BRAF	Targeted Isoforms Targeted Isoforms Targeted Isoforms		2 Detected Gene EGFR	1		Class
SNVs/Indels 6 Detected Gene ERBB3 KRAS	AA Change p.E332K p.A59T	Mol Freq % 3.7131 0.1335	Class Hotspot Hotspot	5 Detected Greenme Driver Gene MET ALK BRAF RET	Targeted Isoforms Targeted Isoforms Targeted Isoforms Targeted Isoforms		2 Detected Gene EGFR	1		Class
SNVs/Indels 6 Detected Gene ERBB3 KRAS KRAS	AA Change p.E332K p.A59T p.G12A	Mol Freq % 3.7131 0.1335 2.6452	Class Hotspot Hotspot Hotspot	5 Detected Orecomme Driver Gene MET ALK BRAF	Targeted Isoforms Targeted Isoforms Targeted Isoforms		2 Detected Gene EGFR	1		Class

SNVs/InDels					
Some la ID			Molecular fr	equency (%)	
Sample ID	Gene	Variant	Run 1	Run 2	
FFPE1	AKT1	p.?	4,2	4,9	
FFPE1	BRAF	p.V600E	15,5	19,3	
FFPE1	CDKN2A	p.R58*	nd	9,3	
FFPE1	CTNNB1	p.S33Y	5,9	6,2	
FFPE1	CTNNB1	p.S45del	4,8	4,3	
FFPE1	EGFR	p.A767_V769dup	3,5	5,1	
FFPE1	EGFR	p.E746_A750del	3,1	nd	
FFPE1	EGFR	p.G719S	7,4	7,1	
FFPE1	GNA11	p.Q209L	3,9	2,7	
FFPE1	KRAS	p.G13D	2,8	3,7	
FFPE1	MAP2K1	p.Q56P	3,8	3,4	
FFPE1	PIK3CA	p.E545K	3,8	3,5	
FFPE1	PIK3CA	p.H1047R	19,8	17,6	
FFPE1	TP53	p.S241C	9,0	5,8	
FFPE1	TP53	p.S241F	9,0	10,2	
FFPE2	AKT3	p.Q78K	nd	2,2	
FFPE2	BRAF	p.V600E	64,3	69,7	
FFPE2	EGFR	p.E746_A750del	3,5	3,6	
FFPE2	EGFR	p.G719S	5,4	6,3	
FFPE2	EGFR	p.L858R	3,9	5,1	
FFPE2	EGFR	p.L861Q	3,9	3,4	
FFPE2	EGFR	p.T790M	4,9	4,1	
FFPE2	PIK3CA	p.H1047R	50,8	54,6	
FFPE3	CTNNB1	p.S33Y	51,6	51,0	
FFPE3	EGFR	p.G719S	31,5	32,6	
FFPE3	KRAS	p.A146T	3,8	3,7	
FFPE3	KRAS	p.G12D	5,9	4,4	
FFPE3	KRAS	p.G13D	4,1	4,0	
FFPE3	KRAS	p.Q61H	3,9	3,1	
FFPE3	MAP2K1	p.Q56P	49,4	52,2	
FFPE3	NRAS	p.G12V	4,0	6,0	
FFPE3	NRAS	p.Q61K	3,6	3,8	
FFPE5	BRAF	p.V600E	15,3	14,3	
FFPE5	EGFR	p.E746_A750del	13,1	10,8	
FFPE5	EGFR	p.L858R	14,6	16,1	
FFPE5	ERBB2	p.Y772_A775dup	15,9	14,8	
FFPE5	IDH1	p.R132C	14,3	13,3	
FFPE5	KRAS	p.G12D	14,2	14,5	
FFPE5	PIK3CA	p.E542K	16,3	16,4	

	Fusi	ions	
Sample ID	Driver Gene	Run 1	Run 2
FFPE2	ALK	Detected	Detected
FFPE2	BRAF	Detected	Detected
FFPE2	NTRK1	Detected	Detected
FFPE2	NTRK2	Detected	Detected
FFPE2	NTRK3	Detected	Detected
FFPE5	FGFR3	Detected	Detected

CNVs						
Sample ID	Gene	Run 1	Run 2			
FFPE1	CDKN2A	loss	loss			
FFPE1	MET	gain	gain			
FFPE5	MET	gain	gain			
FFPE5	AR	loss	Loss			
FFPE5	FGFR3	loss	nd			

• Different variant types can be detected;

	S	NVs/InD	els	
Sample ID	Gene	Variant	Mclecular fr Run 1	equency (%) Run 2
FFPE1	AKT1	p.?	4,2	4,9
FFPE1	BRAF	p.V600E	15,5	19,3
FFPE1	CDKN2A	p.R58*	nd	9,3
FFPE1	CTNNB1	p.S33Y	5,9	6,2
FFPE1	CTNNB1	p.S45del	4,8	4,3
FFPE1	EGFR	p.A767 V769-up	3,5	5,1
FFPE1	EGFR	p.E746 A750 del	3,1	nd
FFPE1	EGFR	p.G7195	7,4	7,1
FFPE1	GNA11	p.Q209	3,9	2,7
FFPE1	KRAS	p.G13P	2,8	3,7
FFPE1	MAP2K1	p.Q56	3,8	3,4
FFPE1	PIK3CA	p.E545K	3,8	3,5
FFPE1	PIK3CA	p.H1047R	19,8	17,6
FFPE1	TP53	p.S24 C	9,0	5,8
FFPE1	TP53	p.S241F	9,0	10,2
FFPE2	AKT3	p.Q7 ⁸ K	nd	2,2
FFPE2	BRAF	p.V600E	64,3	69,7
FFPE2	EGFR	p.E746 A750del	3,5	3,6
FFPE2	EGFR	p.G719S	5,4	6,3
FFPE2	EGFR	p.L85BR	3,9	5,1
FFPE2	EGFR	p.L86 Q	3,9	3,4
FFPE2	EGFR	p.T79 <mark>≏</mark> M	4,9	4,1
FFPE2	PIK3CA	p.H1047R	50,8	54,6
FFPE3	CTNNB1	p.S33-/	51,6	51,0
FFPE3	EGFR	p.G719S	31,5	32,6
FFPE3	KRAS	p.A146	3,8	3,7
FFPE3	KRAS	p.G12D	5,9	4,4
FFPE3	KRAS	p.G13D	4,1	4,0
FFPE3	KRAS	p.Q61H	3,9	3,1
FFPE3	MAP2K1	p.Q56P	49,4	52,2
FFPE3	NRAS	p.G12V	4,0	6,0
FFPE3	NRAS	p.Q61K	3,6	3,8
FFPE5	BRAF	p.V600E	15,3	14,3
FFPE5	EGFR	p.E746_A750del	13,1	10,8
FFPE5	EGFR	p.L858R	14,6	16,1
FFPE5	ERBB2	p.Y772_A775dup	15,9	14,8
FFPE5	IDH1	p.R132C	14,3	13,3
FFPE5	KRAS	p.G12D	14,2	14,5
FFPE5	PIK3CA	p.E542K	16,3	16,4

	Fusi	ions		
Sample ID	Driver Gene	Run 1	Run 2	San
FFPE2	ALK	Detected	Detected	F
FFPE2	BRAF	Detected	Detected	F
FFPE2	NTRK1	Detected	Detected	F
FFPE2	NTRK2	Detected	Detected	F
FFPE2	NTRK3	Detected	Detected	F
FFPE5	FGFR3	Detected	Detected	

CNVs					
Sample ID	Gene	Run 1	Run 2		
FFPE1	CDKN2A	loss	loss		
FFPE1	MET	gain	gain		
FFPE5	MET	gain	gain		
FFPE5	AR	loss	Loss		
FFPE5	FGFR3	loss	nd		

- Different variant types can be detected;
- Reproducibility high between runs;
- Curiously, deviation of molecular frequency is bigger for

higher molecular frequencies (MF<10% SD:0.6 – MF>10% SD:1.4);

SNVs/InDels

Sample ID	Gene	Variant	Molecular fr	equency (%)
Sample ID	Gene	Varialit	Run 1	Run 2
FFPE1	AKT1	p.?	4,2	4,9
FFPE1	BRAF	p.V600E	15,5	19,3
FFPE1	CDKN2A	p.R58*	nd	9,3
FFPE1	CTNNB1	p.S33Y	5,9	6,2
FFPE1	CTNNB1	p.S45del	4,8	4,3
FFPE1	EGFR	p.A767_V769dup	3,5	5,1
FFPE1	EGFR	p.E746_A750del	3,1	nd
FFPE1	EGFR	p.G719S	7,4	7,1
FFPE1	GNA11	p.Q209L	3,9	2,7
FFPE1	KRAS	p.G13D	2,8	3,7
FFPE1	MAP2K1	p.Q56P	3,8	3,4
FFPE1	PIK3CA	p.E545K	3,8	3,5
FFPE1	PIK3CA	p.H1047R	19,8	17,6
FFPE1	TP53	p.S241C	9,0	5,8
FFPE1	TP53	p.S241F	9,0	10,2
FFPE2	AKT3	p.Q78K	nd	2,2
FFPE2	BRAF	p.V600E	64,3	69,7
FFPE2	EGFR	p.E746 A750del	3,5	3,6
FFPE2	EGFR	p.G719S	5,4	6,3
FFPE2	EGFR	p.L858R	3,9	5,1
FFPE2	EGFR	p.L861Q	3,9	3,4
FFPE2	EGFR	p.T790M	4,9	4,1
FFPE2	PIK3CA	p.H1047R	50,8	54,6
FFPE3	CTNNB1	p.S33Y	51,6	51,0
FFPE3	EGFR	p.G719S	31,5	32,6
FFPE3	KRAS	p.A146T	3,8	3,7
FFPE3	KRAS	p.G12D	5,9	4,4
FFPE3	KRAS	p.G13D	4,1	4,0
FFPE3	KRAS	p.Q61H	3,9	3,1
FFPE3	MAP2K1	p.Q56P	49,4	52,2
FFPE3	NRAS	p.G12V	4,0	6,0
FFPE3	NRAS	p.Q61K	3,6	3,8
FFPE5	BRAF	p.V600E	15,3	14,3
FFPE5	EGFR	p.E746_A750del	13,1	10,8
FFPE5	EGFR	p.L858R	14,6	16,1
FFPE5	ERBB2	p.Y772_A775dup	15,9	14,8
FFPE5	IDH1	p.R132C	14,3	13,3
FFPE5	KRAS	p.G12D	14,2	14,5
FFPE5	PIK3CA	p.E542K	16,3	16,4

Fusions				
Sample ID	Driver Gene	Run 1	Run 2	
FFPE2	ALK	Detected	Detected	
FFPE2	BRAF	Detected	Detected	
FFPE2	NTRK1	Detected	Detected	
FFPE2	NTRK2	Detected	Detected	
FFPE2	NTRK3	Detected	Detected	
FFPE5	FGFR3	Detected	Detected	

CNVs			
Sample ID	Gene	Run 1	Run 2
FFPE1	CDKN2A	loss	loss
FFPE1	MET	gain	gain
FFPE5	MET	gain	gain
FFPE5	AR	loss	Loss
FFPE5	FGFR3	loss	nd

- Different variant types can be detected;
- Reproducibility high between runs;
- Curiously, deviation of molecular frequency is bigger for higher molecular frequencies (MF<10% SD:0.6 MF>10% SD:1.4);

Accuracy of 98% (95%CI 94% to 99%);

Sensitivity of 96 % (95%CI 89% to 99%)

Specificity of 100% (95%CI 94% to 100%).

Commercial control samples

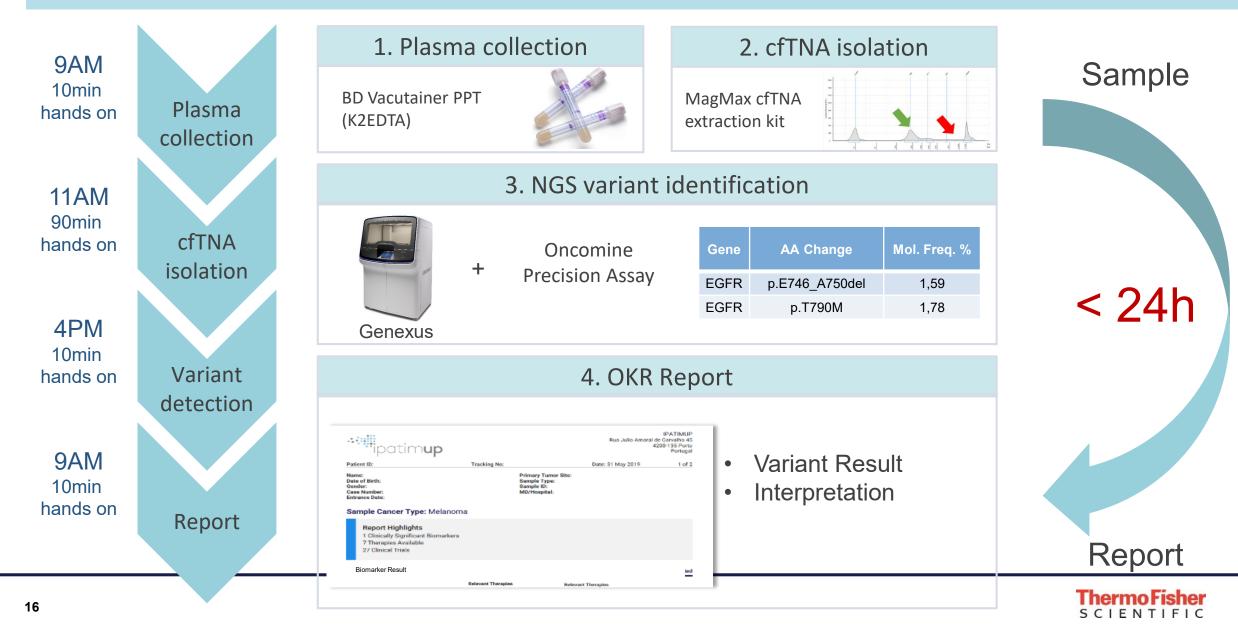
Horizon and SeraCare FFPE and cfDNA reference material

Clinical research samples

- Lung cancer tissue and liquid biopsy research samples
- Previously characterize on an Ion S5XL system

Tissue biopsies – RNA and DNA

Lung cancer FFPE sample were sequenced using Colon and Lung or Lung Fusion panel on Ion S5XL system and the Oncomine Precision Assay on Genexus instrument


Variants covered by both panels were detected in both systems at similar allelic frequencies

Additional variants were detected using the Oncomine Precision Assay

Sample 1 presented additional p.T790M mutation that had not been previously identified (intra-sample heterogeneity?)

FFPE	Gene	AA Change	Genexus	lon S5XL
Sample 1	EGFR	p.L858R	43,8	31,3
	TP53	p.R248Q	1,8	nd
	EGFR	р. Т790М	1,6	nd
	ALK	p.A1200V	1,5	nd
Sample 2	EGFR	p.L747_P753delinsS	28,6	20,1
	TP53	p.C176R	3,9	nd
	RET	p.G810S	1,6	nd
	EGFR	p.P848L	1,6	nd
	FGFR3	p.R399C	0,3	nd
Sample 3	ALK	fusion	detected	detected
Sample 4	BRAF	p.V600E	47,8	36,3
	TP53	p.R175C	13,8	nd
	FGFR2	p.A648T	6,9	nd
	EGFR	p.R836C	6,2	nd
	ERBB3	p.V104M	4,4	nd
	PDGFRA	p.T849C	4,2	nd
	PIK3CA	p.V344M	3,7	nd
	MAP2K1	p.K57N	2,8	nd
	GNAQ	p.R183Q	2,1	nd
	EGFR	p.V769M	1,8	nd
Sample 5	KRAS	p.G12D	58,3	44,7
	TP53	p.C176Y	31,4	nd
	FGFR3	p.R399C	3,6	nd
	CDKN2A	p.R58Q	3,1	nd
	RET	p.R912Q	2,5	nd
	BRAF	p.D594N	2,3	nd


Liquid biopsies – Lung cancer plasma sample at recurrence

Genexus implementation scenarios

Stand-alone			
All-in	-one		
Gene	exus		
High volume Routine assays		onal assays TAT assays	

Genexus implementation scenarios

Overall impression

- ALL-IN-ONE solution from nucleic acids to variants;
- ACCESSIBLE: no a priori NGS expertize needed;
- SIMPLE: all I needed was a pipette to add my samples to be sequenced;
- ROBUST: vision-system checks all your steps;
- FAST: allowed a turn around time of 24h from plasma to report.

This system allows a wider implementation of NGS for genomic profiling, potentially bringing precision medicine closer to clinical practice.

Joana Reis Sandra Coelho José Carlos Machado

Venceslau Hespanhol Gabriela Fernandes Fatima Carneiro Conceição Souto Moura

Sohaib Qureshi Jussi Vanhatalo Ian Grinsell Rosella Petraroli Andy Felton

Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar. Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text and material represent they have the rights to do so.

Speaker was provided honorarium by Thermo Fisher Scientific for this presentation